Menu Close

lim-x-0-4-x-2-x-8-x-4-x-




Question Number 167981 by mathlove last updated on 31/Mar/22
lim_(x→0) ((4^x −2^x )/(8^x −4^x ))=?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{4}^{{x}} −\mathrm{2}^{{x}} }{\mathrm{8}^{{x}} −\mathrm{4}^{{x}} }=? \\ $$
Answered by mathlove last updated on 31/Mar/22
lim_(x→0) (((2^x )^2 −2^x )/((2^x )^3 −(2^x )^2 ))=lim_(x→0) ((2^x (2^x −1))/((2^x )^2 (2^x −1)))  lim_(x→0) (2^x /(2^x ∙2^x ))=lim_(x→0) 2^x =2^0 =1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{2}^{{x}} \right)^{\mathrm{2}} −\mathrm{2}^{{x}} }{\left(\mathrm{2}^{{x}} \right)^{\mathrm{3}} −\left(\mathrm{2}^{{x}} \right)^{\mathrm{2}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}^{{x}} \cancel{\left(\mathrm{2}^{{x}} −\mathrm{1}\right)}}{\left(\mathrm{2}^{{x}} \right)^{\mathrm{2}} \cancel{\left(\mathrm{2}^{{x}} −\mathrm{1}\right)}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}^{{x}} }{\mathrm{2}^{{x}} \centerdot\mathrm{2}^{{x}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}2}^{{x}} =\mathrm{2}^{\mathrm{0}} =\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *