Menu Close

lim-x-0-4x-2-6x-2-9x-4-9sin-2-x-3x-4x-3-x-2x-1-




Question Number 86193 by john santu last updated on 27/Mar/20
lim_(x→0)  ((4x^2 +((6x^2 )/( (√(9x^4 +9sin^2 x)))))/(3x−((4x^3 −x)/(2x+1)))) = ?
limx04x2+6x29x4+9sin2x3x4x3x2x+1=?
Commented by jagoll last updated on 27/Mar/20
i like this question
ilikethisquestion
Commented by MJS last updated on 27/Mar/20
the limit x→0^−  is −(1/2) but the limit x→0^+  is  +(1/2) ⇒ the limit doesn′t exist
thelimitx0is12butthelimitx0+is+12thelimitdoesntexist
Commented by MJS last updated on 28/Mar/20
f(x)=((4x^2 +((6x^2 )/( (√(9x^4 +9sin^2  x)))))/(3x−((4x^3 −x)/(2x+1))))<0 ∀x<0  just calculate f(−1), f(−(1/(10))), f(−(1/(100))), ...
f(x)=4x2+6x29x4+9sin2x3x4x3x2x+1<0x<0justcalculatef(1),f(110),f(1100),
Commented by john santu last updated on 28/Mar/20
post your argument sir
postyourargumentsir
Commented by jagoll last updated on 28/Mar/20
why?
why?
Commented by john santu last updated on 28/Mar/20
Commented by john santu last updated on 28/Mar/20
this the graph?
thisthegraph?
Commented by MJS last updated on 28/Mar/20
the graph before or after cancelling and  transforming the fraction?  u(x)=4x^2 +((6x^2 )/( (√(9x^4 +9sin^2  x))))  u(x) is defined for x≠0 and u(x)>0∀x≠0  v(x)=3x−((4x^3 −x)/(2x+1))  v(x) is defined for x≠−(1/2) and  { ((v(x)≥0; 0≤x≤2)),((v(x)<0; x<−(1/2)∨−(1/2)<x<0∨x>2)) :}  ⇒ f(x)=((u(x))/(v(x))) is defined for x≠−(1/2)∧x≠0∧x≠2  and  { ((f(x)≥0; 0<x<2)),((f(x)<0; x<−(1/2)∨−(1/2)<x<0∨x>2)) :}
thegraphbeforeoraftercancellingandtransformingthefraction?u(x)=4x2+6x29x4+9sin2xu(x)isdefinedforx0andu(x)>0x0v(x)=3x4x3x2x+1v(x)isdefinedforx12and{v(x)0;0x2v(x)<0;x<1212<x<0x>2f(x)=u(x)v(x)isdefinedforx12x0x2and{f(x)0;0<x<2f(x)<0;x<1212<x<0x>2
Answered by john santu last updated on 27/Mar/20

Leave a Reply

Your email address will not be published. Required fields are marked *