Menu Close

lim-x-0-5e-x-5e-x-10-4x-2-




Question Number 168014 by mathlove last updated on 31/Mar/22
lim_(x→0) ((5e^x +5e^(−x) −10)/(4x^2 ))=?
limx05ex+5ex104x2=?
Answered by som(math1967) last updated on 01/Apr/22
  ((5e^x +(5/e^x )−10)/(4x^2 ))  =((5e^x −5−(5/e^x )(e^x −1))/(4x^2 ))  =((5(e^x −1)−(5/e^x )(e^x −1))/(4x^2 ))  =(((e^x −1)(5−(5/e^x )))/(4x^2 ))  =((5(e^x −1)(e^x −1))/(4x^2 e^x ))  ∴lim_(x→0)  (5/4)×(((e^x −1)/x))^2 ×(1/e^x )  =(5/4)×1^2 ×1=(5/4)
5ex+5ex104x2=5ex55ex(ex1)4x2=5(ex1)5ex(ex1)4x2=(ex1)(55ex)4x2=5(ex1)(ex1)4x2exlimx054×(ex1x)2×1ex=54×12×1=54
Commented by som(math1967) last updated on 01/Apr/22
other way  (5/4)lim_(x→0)  ((e^x +e^(−x) −2)/x^2 )  =(5/4)lim_(x→0)  ((e^(2x) +1−2e^x )/(e^x ×x^2 ))  =(5/4) lim_(x→0) (((e^x −1)/x))^2 ×(1/e^x )  =(5/4)×1^2 ×1=(5/4)
otherway54limx0ex+ex2x2=54limx0e2x+12exex×x2=54limx0(ex1x)2×1ex=54×12×1=54

Leave a Reply

Your email address will not be published. Required fields are marked *