Menu Close

lim-x-0-7-x-1-2-x-1-




Question Number 95230 by i jagooll last updated on 24/May/20
lim_(x→0^+ )  ((7^(√x)  −1)/(2^(√x)  −1)) = ?
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{7}^{\sqrt{\mathrm{x}}} \:−\mathrm{1}}{\mathrm{2}^{\sqrt{\mathrm{x}}} \:−\mathrm{1}}\:=\:? \\ $$
Answered by bobhans last updated on 24/May/20
lim^L _(x→0^+ )  (((1/(2(√x))) 7^(√x)  ln(7))/((1/(2(√x))) 2^(√x)  ln(2))) = ((ln (7))/(ln(2))) = log _2 (7)
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{li}\overset{\mathrm{L}} {\mathrm{m}}}\:\frac{\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}}}\:\mathrm{7}^{\sqrt{\mathrm{x}}} \:\mathrm{ln}\left(\mathrm{7}\right)}{\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}}}\:\mathrm{2}^{\sqrt{\mathrm{x}}} \:\mathrm{ln}\left(\mathrm{2}\right)}\:=\:\frac{\mathrm{ln}\:\left(\mathrm{7}\right)}{\mathrm{ln}\left(\mathrm{2}\right)}\:=\:\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{7}\right)\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *