Menu Close

lim-x-0-7tan-x-tan-7x-x-3-




Question Number 162523 by cortano last updated on 30/Dec/21
   lim_(x→0)  ((7tan x−tan 7x)/x^3 ) =?
limx07tanxtan7xx3=?
Answered by Ar Brandon last updated on 30/Dec/21
L=lim_(x→0) ((7tanx−tan7x)/x^3 )       =lim_(x→0) ((7(x+(x^3 /3))−(7x+(((7x)^3 )/3)))/x^3 )       =lim_(x→0) (1/x^3 )(((7x^3 )/3)−((343x^3 )/3))=((7−343)/3)=−112
L=limx07tanxtan7xx3=limx07(x+x33)(7x+(7x)33)x3=limx01x3(7x33343x33)=73433=112
Answered by bobhans last updated on 30/Dec/21
 lim_(x→0)  ((7tan x−7x+7x−tan 7x)/x^3 ) =   lim_(x→0)  ((7(tan x−x))/x^3 ) −343 lim_(x→0)  ((tan 7x−7x)/((7x)^3 )) =   (7/3)−((343)/3) = −112
limx07tanx7x+7xtan7xx3=limx07(tanxx)x3343limx0tan7x7x(7x)3=733433=112

Leave a Reply

Your email address will not be published. Required fields are marked *