Menu Close

lim-x-0-8sec-x-8-tan-4-x-4tan-2-x-x-6-




Question Number 159349 by cortano last updated on 15/Nov/21
 lim_(x→0)  ((8sec x−8+tan^4 x−4tan^2 x)/x^6 ) =?
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{8sec}\:{x}−\mathrm{8}+\mathrm{tan}\:^{\mathrm{4}} {x}−\mathrm{4tan}\:^{\mathrm{2}} {x}}{{x}^{\mathrm{6}} }\:=? \\ $$
Commented by bobhans last updated on 16/Nov/21
 lim_(x→0)  ((8((√(1+tan^2 x))−1)+tan^4 x−4tan^2 x)/(tan^6 x))   = lim_(x→0)  ((8((√(1+x))−1)+x^2 −4x)/x^3 ) ; x=tan^2 x  =lim_(x→0)  ((8(1+(1/2)x−(1/8)x^2 +(1/(16))x^3 −1)+x^2 −4x)/x^3 )  =lim_(x→0)  (1/2) = (1/2)
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{8}\left(\sqrt{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}−\mathrm{1}\right)+\mathrm{tan}\:^{\mathrm{4}} \mathrm{x}−\mathrm{4tan}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{tan}\:^{\mathrm{6}} \mathrm{x}}\: \\ $$$$=\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{8}\left(\sqrt{\mathrm{1}+\mathrm{x}}−\mathrm{1}\right)+\mathrm{x}^{\mathrm{2}} −\mathrm{4x}}{\mathrm{x}^{\mathrm{3}} }\:;\:\mathrm{x}=\mathrm{tan}\:^{\mathrm{2}} \mathrm{x} \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{8}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{16}}\mathrm{x}^{\mathrm{3}} −\mathrm{1}\right)+\mathrm{x}^{\mathrm{2}} −\mathrm{4x}}{\mathrm{x}^{\mathrm{3}} } \\ $$$$=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}}{\mathrm{2}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by chhaythean last updated on 16/Nov/21
=lim_(x→0) ((8secx−8+tan^4 x−4tan^2 x)/(tan^6 x))×((tan^6 x)/x^6 )  =lim_(x→0) ((8(√(1+tan^2 x))−8+tan^4 x−4tan^2 x)/(tan^6 x))  let u=tan^2 x, x→0 ⇒ u→0  =lim_(u→0) ((8(√(1+u))−8+u^2 −4u)/u^3 )  =lim_(u→0) (([8(√(1+u))−(8−u^2 +4u)][8(√(1+u))+(8−u^2 +4u)])/(u^3 [8(√(1+u))+(8−u^2 +4u)]))  =lim_(u→0) ((64+64u−(8−u^2 +4u)^2 )/(u^3 [8(√(1+u))+(8−u^2 +4u)]))  =lim_(u→0) ((64+64u−(64+u^4 +16u^2 −16u^2 −8u^3 +64u))/(u^3 [8(√(1+u))+(8−u^2 +4u)]))  =lim_(u→0) ((−u^4 +8u^3 )/(u^3 [8(√(1+u))+(8−u^2 +4u)]))  =lim_(u→0) ((−u+8)/([8(√(1+u))+(8−u^2 +4u)]))  =(8/(16))=(1/2)  So  determinant (((lim_(x→0) ((8secx−8+tan^4 x−4tan^2 x)/x^6 )=(1/2))))
$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{8sec}{x}−\mathrm{8}+\mathrm{tan}^{\mathrm{4}} {x}−\mathrm{4tan}^{\mathrm{2}} {x}}{\mathrm{tan}^{\mathrm{6}} {x}}×\frac{\mathrm{tan}^{\mathrm{6}} {x}}{{x}^{\mathrm{6}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{8}\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} {x}}−\mathrm{8}+\mathrm{tan}^{\mathrm{4}} {x}−\mathrm{4tan}^{\mathrm{2}} {x}}{\mathrm{tan}^{\mathrm{6}} {x}} \\ $$$$\mathrm{let}\:\mathrm{u}=\mathrm{tan}^{\mathrm{2}} {x},\:{x}\rightarrow\mathrm{0}\:\Rightarrow\:\mathrm{u}\rightarrow\mathrm{0} \\ $$$$=\underset{\mathrm{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{8}\sqrt{\mathrm{1}+\mathrm{u}}−\mathrm{8}+\mathrm{u}^{\mathrm{2}} −\mathrm{4u}}{\mathrm{u}^{\mathrm{3}} } \\ $$$$=\underset{\mathrm{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left[\mathrm{8}\sqrt{\mathrm{1}+\mathrm{u}}−\left(\mathrm{8}−\mathrm{u}^{\mathrm{2}} +\mathrm{4u}\right)\right]\left[\mathrm{8}\sqrt{\mathrm{1}+\mathrm{u}}+\left(\mathrm{8}−\mathrm{u}^{\mathrm{2}} +\mathrm{4u}\right)\right]}{\mathrm{u}^{\mathrm{3}} \left[\mathrm{8}\sqrt{\mathrm{1}+\mathrm{u}}+\left(\mathrm{8}−\mathrm{u}^{\mathrm{2}} +\mathrm{4u}\right)\right]} \\ $$$$=\underset{\mathrm{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{64}+\mathrm{64u}−\left(\mathrm{8}−\mathrm{u}^{\mathrm{2}} +\mathrm{4u}\right)^{\mathrm{2}} }{\mathrm{u}^{\mathrm{3}} \left[\mathrm{8}\sqrt{\mathrm{1}+\mathrm{u}}+\left(\mathrm{8}−\mathrm{u}^{\mathrm{2}} +\mathrm{4u}\right)\right]} \\ $$$$=\underset{\mathrm{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{64}+\mathrm{64u}−\left(\mathrm{64}+\mathrm{u}^{\mathrm{4}} +\mathrm{16u}^{\mathrm{2}} −\mathrm{16u}^{\mathrm{2}} −\mathrm{8u}^{\mathrm{3}} +\mathrm{64u}\right)}{\mathrm{u}^{\mathrm{3}} \left[\mathrm{8}\sqrt{\mathrm{1}+\mathrm{u}}+\left(\mathrm{8}−\mathrm{u}^{\mathrm{2}} +\mathrm{4u}\right)\right]} \\ $$$$=\underset{\mathrm{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{u}^{\mathrm{4}} +\mathrm{8u}^{\mathrm{3}} }{\mathrm{u}^{\mathrm{3}} \left[\mathrm{8}\sqrt{\mathrm{1}+\mathrm{u}}+\left(\mathrm{8}−\mathrm{u}^{\mathrm{2}} +\mathrm{4u}\right)\right]} \\ $$$$=\underset{\mathrm{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{u}+\mathrm{8}}{\left[\mathrm{8}\sqrt{\mathrm{1}+\mathrm{u}}+\left(\mathrm{8}−\mathrm{u}^{\mathrm{2}} +\mathrm{4u}\right)\right]} \\ $$$$=\frac{\mathrm{8}}{\mathrm{16}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{So}\:\begin{array}{|c|}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{8sec}{x}−\mathrm{8}+\mathrm{tan}^{\mathrm{4}} {x}−\mathrm{4tan}^{\mathrm{2}} {x}}{{x}^{\mathrm{6}} }=\frac{\mathrm{1}}{\mathrm{2}}}\\\hline\end{array} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *