Menu Close

lim-x-0-8x-2-4x-1-1-10-7x-2-3x-1-1-5-2-x-




Question Number 161437 by cortano last updated on 17/Dec/21
   lim_(x→0)  ((((8x^2 −4x+1))^(1/(10))  +((7x^2 +3x+1))^(1/5) −2)/x) =?
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{10}}]{\mathrm{8}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}\:+\sqrt[{\mathrm{5}}]{\mathrm{7}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{1}}−\mathrm{2}}{{x}}\:=? \\ $$
Answered by bobhans last updated on 18/Dec/21
  lim_(x→0)  ((((8x^2 −4x+1))^(1/(10)) −1+((7x^2 +3x+1))^(1/5) −1)/x)   L_1  = lim_(x→0)  (((8x−4)[((8x^2 −4x+1))^(1/(10)) −1 ])/((8x^2 −4x+1)−1))    L_1  = −4×lim_(r→1)  ((r−1)/(r^(10) −1)) = −(4/(10)) ; [ r=((8x^2 −4x+1))^(1/(10))  ]   L_2 = lim_(x→0)  (((7x+3)[((7x^2 +3x+1))^(1/5) −1])/((7x^2 +3x+1)−1))   L_2  = 3×lim_(x→0)  ((((7x^2 +3x+1))^(1/5) −1)/((7x^2 +3x+1)−1))   L_2  = 3×lim_(z→1)  ((z−1)/(z^5 −1)) = (3/5) ; [ z=((7x^2 +3x+1))^(1/5)  ]   ∴ L = L_1 +L_2  = −(4/(10))+(3/5) = (2/(10))=(1/5)
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{10}}]{\mathrm{8x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{1}}−\mathrm{1}+\sqrt[{\mathrm{5}}]{\mathrm{7x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{1}}−\mathrm{1}}{\mathrm{x}} \\ $$$$\:\mathrm{L}_{\mathrm{1}} \:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{8x}−\mathrm{4}\right)\left[\sqrt[{\mathrm{10}}]{\mathrm{8x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{1}}−\mathrm{1}\:\right]}{\left(\mathrm{8x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{1}\right)−\mathrm{1}}\: \\ $$$$\:\mathrm{L}_{\mathrm{1}} \:=\:−\mathrm{4}×\underset{\mathrm{r}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{r}−\mathrm{1}}{\mathrm{r}^{\mathrm{10}} −\mathrm{1}}\:=\:−\frac{\mathrm{4}}{\mathrm{10}}\:;\:\left[\:\mathrm{r}=\sqrt[{\mathrm{10}}]{\mathrm{8x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{1}}\:\right] \\ $$$$\:\mathrm{L}_{\mathrm{2}} =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{7x}+\mathrm{3}\right)\left[\sqrt[{\mathrm{5}}]{\mathrm{7x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{1}}−\mathrm{1}\right]}{\left(\mathrm{7x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{1}\right)−\mathrm{1}} \\ $$$$\:\mathrm{L}_{\mathrm{2}} \:=\:\mathrm{3}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{5}}]{\mathrm{7x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{1}}−\mathrm{1}}{\left(\mathrm{7x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{1}\right)−\mathrm{1}} \\ $$$$\:\mathrm{L}_{\mathrm{2}} \:=\:\mathrm{3}×\underset{\mathrm{z}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{z}−\mathrm{1}}{\mathrm{z}^{\mathrm{5}} −\mathrm{1}}\:=\:\frac{\mathrm{3}}{\mathrm{5}}\:;\:\left[\:\mathrm{z}=\sqrt[{\mathrm{5}}]{\mathrm{7x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{1}}\:\right] \\ $$$$\:\therefore\:\mathrm{L}\:=\:\mathrm{L}_{\mathrm{1}} +\mathrm{L}_{\mathrm{2}} \:=\:−\frac{\mathrm{4}}{\mathrm{10}}+\frac{\mathrm{3}}{\mathrm{5}}\:=\:\frac{\mathrm{2}}{\mathrm{10}}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$
Answered by mathmax by abdo last updated on 18/Dec/21
f(x)=(((1+8x^2 −4x)^(1/(10)) +(1+7x^2 +3x)^(1/5) −2)/x) ⇒  f(x)∼((1+(1/(10))(8x^2 −4x)+1+(1/5)(7x^2 +3x)−2)/x) ⇒  f(x) ∼(((4/5)x^2 −(2/5)x+(7/5)x^2 +(3/5)x)/x) ⇒f(x)∼((((11)/5)x^2 +(1/5)x)/x) ⇒  f(x)∼((11)/5)x+(1/5) ⇒lim_(x→0) f(x)=(1/5)
$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\left(\mathrm{1}+\mathrm{8x}^{\mathrm{2}} −\mathrm{4x}\right)^{\frac{\mathrm{1}}{\mathrm{10}}} +\left(\mathrm{1}+\mathrm{7x}^{\mathrm{2}} +\mathrm{3x}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} −\mathrm{2}}{\mathrm{x}}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\sim\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{8x}^{\mathrm{2}} −\mathrm{4x}\right)+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{5}}\left(\mathrm{7x}^{\mathrm{2}} +\mathrm{3x}\right)−\mathrm{2}}{\mathrm{x}}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:\sim\frac{\frac{\mathrm{4}}{\mathrm{5}}\mathrm{x}^{\mathrm{2}} −\frac{\mathrm{2}}{\mathrm{5}}\mathrm{x}+\frac{\mathrm{7}}{\mathrm{5}}\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{5}}\mathrm{x}}{\mathrm{x}}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)\sim\frac{\frac{\mathrm{11}}{\mathrm{5}}\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{5}}\mathrm{x}}{\mathrm{x}}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\sim\frac{\mathrm{11}}{\mathrm{5}}\mathrm{x}+\frac{\mathrm{1}}{\mathrm{5}}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *