Menu Close

lim-x-0-a-sinx-c-sinx-m-sinx-n-sinx-a-c-m-n-0-




Question Number 169565 by mathlove last updated on 03/May/22
lim_(x→0) ((a^(sinx) −c^(sinx) )/(m^(sinx) −n^(sinx) ))=?  ∀{a,c,m,n}∈[0,∞]
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{a}^{{sinx}} −{c}^{{sinx}} }{{m}^{{sinx}} −{n}^{{sinx}} }=? \\ $$$$\forall\left\{{a},{c},{m},{n}\right\}\in\left[\mathrm{0},\infty\right] \\ $$
Commented by infinityaction last updated on 03/May/22
((log _e (a/c))/(log _e (m/n)))
$$\frac{\mathrm{log}\:_{{e}} \left({a}/{c}\right)}{\mathrm{log}\:_{{e}} \left({m}/{n}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *