Question Number 46563 by Necxx last updated on 28/Oct/18
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{a}^{{x}} +{b}^{{x}} +{c}^{{x}} }{\mathrm{3}}\right)^{\mathrm{1}/{x}} \\ $$
Answered by ajfour last updated on 28/Oct/18
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\frac{{a}^{{x}} −\mathrm{1}+{b}^{{x}} −\mathrm{1}+{c}^{{x}} −\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{1}/{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\left[\mathrm{1}+{f}\left({a},{b},{c},{x}\right)\right]^{\frac{\mathrm{1}}{{f}\left({a},{b},{c},{x}\right)}} \right\}^{\frac{{f}\left({a},{b},{c},{x}\right)}{{x}}} \\ $$$$=\:{e}^{\frac{\mathrm{ln}\:{a}+\mathrm{ln}\:{b}+\mathrm{ln}\:{c}}{\mathrm{3}}\:} =\:\:\left(\boldsymbol{{abc}}\right)^{\mathrm{1}/\mathrm{3}} \:. \\ $$