Menu Close

lim-x-0-arcsin-x-2-x-2-x-4-tan-2-x-




Question Number 101075 by bemath last updated on 30/Jun/20
lim_(x→0)  ((arcsin (x^2 )−x^2 )/(x^4  tan^2 x)) = ?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{arcsin}\:\left(\mathrm{x}^{\mathrm{2}} \right)−\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{4}} \:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}\:=\:? \\ $$
Commented by Dwaipayan Shikari last updated on 30/Jun/20
lim_(x→0) ((x^2 +(x^6 /6)−x^2 )/(x^4 .x^2 )) =((x^6 /6)/x^6 )=(1/6)  {As x→0   suppose tanx=x   tan^2 x=x^2 }{And maclaurin series for sin^(−1) x^2 }
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} +\frac{{x}^{\mathrm{6}} }{\mathrm{6}}−{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} .{x}^{\mathrm{2}} }\:=\frac{\frac{{x}^{\mathrm{6}} }{\mathrm{6}}}{{x}^{\mathrm{6}} }=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\left\{{As}\:{x}\rightarrow\mathrm{0}\:\:\:{suppose}\:{tanx}={x}\:\:\:{tan}^{\mathrm{2}} {x}={x}^{\mathrm{2}} \right\}\left\{{And}\:{maclaurin}\:{series}\:{for}\:\mathrm{sin}^{−\mathrm{1}} {x}^{\mathrm{2}} \right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *