Menu Close

lim-x-0-cos-x-cos-3x-x-3-cos-pi-x-x-2-




Question Number 126378 by benjo_mathlover last updated on 20/Dec/20
  lim_(x→0)  ((cos x−cos 3x+x^3 cos ((π/x)))/x^2 )?
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}−\mathrm{cos}\:\mathrm{3}{x}+{x}^{\mathrm{3}} \mathrm{cos}\:\left(\frac{\pi}{{x}}\right)}{{x}^{\mathrm{2}} }? \\ $$
Answered by liberty last updated on 20/Dec/20
 lim_(x→0)  ((cos x−cos 3x)/x^2 )+lim_(x→0) ((x^3 cos ((π/x)))/x^2 ) =   lim_(x→0)  (((1−(1/2)x^2 )−(1−(9/2)x^2 ))/x^2 )+lim_(x→0)  xcos ((π/x)) =  lim_(x→0) ((4x^2 )/x^2 ) + lim_(x→0)  x cos ((π/x)) = 4+0 = 4
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}−\mathrm{cos}\:\mathrm{3}{x}}{{x}^{\mathrm{2}} }+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{3}} \mathrm{cos}\:\left(\frac{\pi}{{x}}\right)}{{x}^{\mathrm{2}} }\:= \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \right)−\left(\mathrm{1}−\frac{\mathrm{9}}{\mathrm{2}}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}\mathrm{cos}\:\left(\frac{\pi}{{x}}\right)\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{4}{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\:+\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}\:\mathrm{cos}\:\left(\frac{\pi}{{x}}\right)\:=\:\mathrm{4}+\mathrm{0}\:=\:\mathrm{4} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *