Menu Close

lim-x-0-cos-x-cot-x-




Question Number 117637 by bemath last updated on 13/Oct/20
lim_(x→0)  (cos x )^(cot x)  =?
limx0(cosx)cotx=?
Answered by AbduraufKodiriy last updated on 13/Oct/20
lim_(x→0) (cosx^(cotx) )=lim_(x→0) (cosx^((cosx)/(sinx)) )=  =lim_(x→0) (1+cosx−1)^((cosxsinx)/(1−cos^2 x)) =lim_(x→0) ((1+cosx−1)^(1/(1−cosx)) )^((cosxsinx)/(1+cosx)) =  =lim_(x→0) (e^((cosxsinx)/(1+cosx)) )=e^0 =1
limx0(cosxcotx)=limx0(cosxcosxsinx)==limx0(1+cosx1)cosxsinx1cos2x=limx0((1+cosx1)11cosx)cosxsinx1+cosx==limx0(ecosxsinx1+cosx)=e0=1
Answered by Dwaipayan Shikari last updated on 13/Oct/20
lim_(x→0) (cosx)^(cotx) =y  cotxlog(1+cosx−1)=logy  cotx(cosx−1)=logy               lim_(x→0) log(1+x)=x  ((cos^2 x−cosx)/(sinx))=logy  cosx(((2sin^2 (x/2))/(2sin(x/2)cos(x/2))))=logy  logy=0  y=e^0 =1
limx0(cosx)cotx=ycotxlog(1+cosx1)=logycotx(cosx1)=logylimx0log(1+x)=xcos2xcosxsinx=logycosx(2sin2x22sinx2cosx2)=logylogy=0y=e0=1

Leave a Reply

Your email address will not be published. Required fields are marked *