Menu Close

lim-x-0-cos-x-log-x-




Question Number 129510 by Adel last updated on 16/Jan/21
lim_(x→0) (cos x)^(log x) =?
limx0(cosx)logx=?
Commented by mr W last updated on 16/Jan/21
⇒Q129387
Q129387
Answered by greg_ed last updated on 16/Jan/21
(cos x)^(ln x)  = cos^(ln x ) x = e^(ln x ln(cos x))   let′s rewrite this u(x)=ln x ln(cos x).  u (x)=((ln x)/(1/(ln(cos x))))    1. Applying L′Hopital′s rule, we get   u(x)=((ln^2  (cos x))/(x tan x))  2. Applying L′Hopital′s rule, we get  u(x)=−((2ln(cos x)tan x)/(tan x + x sec^2  x))  3. Applying L′Hopital′s rule, we get  u(x)=−((−tan^2  x + sec^2  x ln(cos x))/(sec^2  x (1+ x tan x)))  Plugging x=0 in this, we get   lim_(x→0)  u(x)=0  So, finally   lim_(u→0)  e^(u ) = 1.
(cosx)lnx=coslnxx=elnxln(cosx)letsrewritethisu(x)=lnxln(cosx).u(x)=lnx1ln(cosx)1.ApplyingLHopitalsrule,wegetu(x)=ln2(cosx)xtanx2.ApplyingLHopitalsrule,wegetu(x)=2ln(cosx)tanxtanx+xsec2x3.ApplyingLHopitalsrule,wegetu(x)=tan2x+sec2xln(cosx)sec2x(1+xtanx)Pluggingx=0inthis,wegetlimx0u(x)=0So,finallylimu0eu=1.
Answered by mathmax by abdo last updated on 16/Jan/21
let f(x)=(cosx)^(logx)  ⇒f(x)=e^(logxlog(cosx) )  we have  cos(x)∼1−(x^2 /2) ⇒log(cosx)∼log(1−(x^2 /2))∼−(x^2 /2) ⇒  logxlog(cosx)∼−(x^2 /2)logx →0(x→0) ⇒lim_(x→0^+ )   f(x)=e^0  =1
letf(x)=(cosx)logxf(x)=elogxlog(cosx)wehavecos(x)1x22log(cosx)log(1x22)x22logxlog(cosx)x22logx0(x0)limx0+f(x)=e0=1

Leave a Reply

Your email address will not be published. Required fields are marked *