lim-x-0-cos-x-log-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 129510 by Adel last updated on 16/Jan/21 limx→0(cosx)logx=? Commented by mr W last updated on 16/Jan/21 ⇒Q129387 Answered by greg_ed last updated on 16/Jan/21 (cosx)lnx=coslnxx=elnxln(cosx)let′srewritethisu(x)=lnxln(cosx).u(x)=lnx1ln(cosx)1.ApplyingL′Hopital′srule,wegetu(x)=ln2(cosx)xtanx2.ApplyingL′Hopital′srule,wegetu(x)=−2ln(cosx)tanxtanx+xsec2x3.ApplyingL′Hopital′srule,wegetu(x)=−−tan2x+sec2xln(cosx)sec2x(1+xtanx)Pluggingx=0inthis,wegetlimx→0u(x)=0So,finallylimu→0eu=1. Answered by mathmax by abdo last updated on 16/Jan/21 letf(x)=(cosx)logx⇒f(x)=elogxlog(cosx)wehavecos(x)∼1−x22⇒log(cosx)∼log(1−x22)∼−x22⇒logxlog(cosx)∼−x22logx→0(x→0)⇒limx→0+f(x)=e0=1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 2-x-a-3-x-b-1-54-x-Next Next post: secxdx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.