Menu Close

lim-x-0-cosx-1-m-cosx-1-n-x-2-where-m-and-n-integer-




Question Number 82761 by TANMAY PANACEA last updated on 24/Feb/20
lim_(x→0)  (((cosx)^(1/m) −(cosx)^(1/n) )/x^2 )  [where m and n integer]
limx0(cosx)1m(cosx)1nx2[wheremandninteger]
Commented by mr W last updated on 24/Feb/20
lim_(x→0)  (((cosx)^(1/m) −(cosx)^(1/n) )/x^2 )  =lim_(x→0)  (((1−2 sin^2  (x/2))^(1/m) −(1−2 sin^2  (x/2))^(1/n) )/x^2 )  =lim_(x→0)  ((1−(2/m) sin^2  (x/2)+o(sin^2  (x/2))−[1−(2/n) sin^2  (x/2)+o(sin^2  (x/2))])/x^2 )  =lim_(x→0)  ((2((1/n)−(1/m)) sin^2  (x/2))/x^2 )  =(1/2)((1/n)−(1/m))lim_(x→0)  ((( sin (x/2))/(x/2)))^2   =(1/2)((1/n)−(1/m))
limx0(cosx)1m(cosx)1nx2=limx0(12sin2x2)1m(12sin2x2)1nx2=limx012msin2x2+o(sin2x2)[12nsin2x2+o(sin2x2)]x2=limx02(1n1m)sin2x2x2=12(1n1m)limx0(sinx2x2)2=12(1n1m)
Commented by TANMAY PANACEA last updated on 24/Feb/20
excellent sir...
excellentsir
Commented by jagoll last updated on 24/Feb/20
sir what is o(sin^2  (x/2))
sirwhatiso(sin2x2)
Commented by abdomathmax last updated on 24/Feb/20
let f(x)=(((cosx)^(1/m) −(cosx)^(1/n) )/x^2 )  we hsve for x→0  cosx∼1−(x^2 /2) ⇒(cosx)^(1/m)  ∼1−(x^2 /(2m)) and  (cosx)^(1/n) ∼1−(x^2 /(2n)) ⇒(cosx)^(1/m) −(cosx)^(1/n)  ∼x^2 ((1/(2n))−(1/(2m)))  ⇒f(x)∼(1/2)(((m−n)/(mn))) ⇒lim_(x→0)  f(x)=((m−n)/(2mn))
letf(x)=(cosx)1m(cosx)1nx2wehsveforx0cosx1x22(cosx)1m1x22mand(cosx)1n1x22n(cosx)1m(cosx)1nx2(12n12m)f(x)12(mnmn)limx0f(x)=mn2mn
Commented by mr W last updated on 24/Feb/20
to jagoll sir:  o(x^2 ) stands for terms with higher orders  than x^2 . for example:  cos x=1−(x^2 /(2!))+(x^4 /(4!))−(x^6 /(6!))+......  =1−(x^2 /(2!))+(x^4 /(4!))+o(x^4 )  =1−(x^2 /(2!))+o(x^2 )    search in google for “little o notation”  for more.
tojagollsir:o(x2)standsfortermswithhigherordersthanx2.forexample:cosx=1x22!+x44!x66!+=1x22!+x44!+o(x4)=1x22!+o(x2)searchingoogleforlittleonotationformore.
Commented by jagoll last updated on 24/Feb/20
thank you . sir
thankyou.sir
Commented by mathmax by abdo last updated on 24/Feb/20
the small o(x^2 )=x^2 δ(x)  with lim_(x→0) δ(x)=0
thesmallo(x2)=x2δ(x)withlimx0δ(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *