Menu Close

lim-x-0-cosx-logx-by-sandiwich-rule-




Question Number 127213 by Study last updated on 27/Dec/20
lim_(x→0) (cosx)^(logx) =???    by sandiwich rule
$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\left({cosx}\right)^{{logx}} =???\:\:\:\:{by}\:{sandiwich}\:{rule} \\ $$
Commented by Study last updated on 27/Dec/20
help me
$${help}\:{me} \\ $$
Commented by Study last updated on 28/Dec/20
please i need your help
$${please}\:{i}\:{need}\:{your}\:{help} \\ $$
Answered by mathmax by abdo last updated on 28/Dec/20
let f(x)=(cosx)^(logx)  ⇒f(x)=e^(logxlog(cosx))   log(cosx)∼log(1−(x^2 /2))∼−(x^2 /2) ⇒logx.log(cosx)∼−(x^2 /2)logx→0(x→o^+ ) ⇒  lim_(x→0^+ )   f(x)=e^0  =1
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{cosx}\right)^{\mathrm{logx}} \:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{logxlog}\left(\mathrm{cosx}\right)} \\ $$$$\mathrm{log}\left(\mathrm{cosx}\right)\sim\mathrm{log}\left(\mathrm{1}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right)\sim−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\mathrm{logx}.\mathrm{log}\left(\mathrm{cosx}\right)\sim−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{logx}\rightarrow\mathrm{0}\left(\mathrm{x}\rightarrow\mathrm{o}^{+} \right)\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{+} } \:\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{0}} \:=\mathrm{1} \\ $$
Commented by Study last updated on 28/Dec/20
who can solve by sandwich rule???
$${who}\:{can}\:{solve}\:{by}\:{sandwich}\:{rule}??? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *