Menu Close

lim-x-0-cot-x-1-ln-x-




Question Number 121460 by bramlexs22 last updated on 08/Nov/20
 lim_(x→0^+ )  (cot x)^(1/(ln x))  ?
limx0+(cotx)1lnx?
Answered by Dwaipayan Shikari last updated on 08/Nov/20
lim_(x→0) (cotx)^(1/(logx)) =y  (1/(logx))log(((cosx)/(sinx)))=logy         (cosx→1)  ⇒−((log(sinx))/(logx))=logy  =−1=logy⇒y=(1/e)  (sinx→x)
limx0(cotx)1logx=y1logxlog(cosxsinx)=logy(cosx1)log(sinx)logx=logy=1=logyy=1e(sinxx)
Answered by liberty last updated on 08/Nov/20
 L= lim_(x→0^+ )  (cot x)^(1/(ln x))    ln L = lim_(x→0^+ )  ((ln cot x)/(ln x)) = lim_(x→0^+ )  ((−cosec^2 x)/((1/x).cot x))   ln L = −lim_(x→0^+ )  ((xsin x)/(sin^2 x.cos x)) = −1   L = e^(−1)  = (1/e).
L=limx0+(cotx)1lnxlnL=limx0+lncotxlnx=limx0+cosec2x1x.cotxlnL=limx0+xsinxsin2x.cosx=1L=e1=1e.

Leave a Reply

Your email address will not be published. Required fields are marked *