lim-x-0-cot-x-1-ln-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 121460 by bramlexs22 last updated on 08/Nov/20 limx→0+(cotx)1lnx? Answered by Dwaipayan Shikari last updated on 08/Nov/20 limx→0(cotx)1logx=y1logxlog(cosxsinx)=logy(cosx→1)⇒−log(sinx)logx=logy=−1=logy⇒y=1e(sinx→x) Answered by liberty last updated on 08/Nov/20 L=limx→0+(cotx)1lnxlnL=limx→0+lncotxlnx=limx→0+−cosec2x1x.cotxlnL=−limx→0+xsinxsin2x.cosx=−1L=e−1=1e. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-121461Next Next post: Question-186999 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.