Question Number 105584 by bemath last updated on 30/Jul/20
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\mathrm{csc}^{\mathrm{2}} \left(\mathrm{2}{x}\right)−\frac{\mathrm{1}}{\mathrm{4}{x}^{\mathrm{2}} }\:\right]? \\ $$
Answered by bobhans last updated on 30/Jul/20
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)}−\frac{\mathrm{1}}{\mathrm{4}{x}^{\mathrm{2}} }\:\right]=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{2}{x}+\mathrm{sin}\:\mathrm{2}{x}\right)\left(\mathrm{2}{x}−\mathrm{sin}\:\mathrm{2}{x}\right)}{\mathrm{4}{x}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{2}{x}+\left(\mathrm{2}{x}−\frac{\left(\mathrm{2}{x}\right)^{\mathrm{3}} }{\mathrm{6}}\right)\right)\left(\mathrm{2}{x}−\left(\mathrm{2}{x}−\frac{\left(\mathrm{2}{x}\right)^{\mathrm{3}} }{\mathrm{6}}\right)\right)}{\left(\mathrm{4}{x}^{\mathrm{2}} \right)\left(\mathrm{4}{x}^{\mathrm{2}} \right)} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{4}{x}−\frac{\mathrm{4}{x}^{\mathrm{3}} }{\mathrm{3}}\right)\left(\frac{\mathrm{4}{x}^{\mathrm{3}} }{\mathrm{3}}\right)}{\mathrm{16}{x}^{\mathrm{4}} }\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{4}{x}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{2}} \right)}{{x}} \\ $$$$×\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4}{x}^{\mathrm{3}} }{\mathrm{3}.\mathrm{16}{x}^{\mathrm{3}} }\:=\:\mathrm{4}×\frac{\mathrm{1}}{\mathrm{12}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}.\: \\ $$