Menu Close

lim-x-0-e-x-2x-3x-4x-nx-1-x-




Question Number 189501 by mathlove last updated on 18/Mar/23
lim_(x→0) ((e^(x+2x+3x+4x+.....+nx) −1)/x)=?
limx0ex+2x+3x+4x+..+nx1x=?
Answered by mehdee42 last updated on 18/Mar/23
hop→lim_(x→0) (1+2+...+n)e^(x+2x+...+nx) =((n(n+1))/2)
hoplimx0(1+2++n)ex+2x++nx=n(n+1)2
Commented by mathlove last updated on 18/Mar/23
with out Hopetal Rul
withoutHopetalRul
Answered by mr W last updated on 18/Mar/23
e^(x+2x+3x+...+nx) =e^((n(n+1)x)/2) =1+((n(n+1)x)/2)+((n^2 (n+1)^2 x^2 )/(2^2 2!))+...  lim_(x→0) ((e^(x+2x+3x+4x+.....+nx) −1)/x)  =lim_(x→0) [((n(n+1))/2)+((n^2 (n+1)^2 x)/(2^2 2!))+...]  =((n(n+1))/2)
ex+2x+3x++nx=en(n+1)x2=1+n(n+1)x2+n2(n+1)2x2222!+limx0ex+2x+3x+4x+..+nx1x=limx0[n(n+1)2+n2(n+1)2x222!+]=n(n+1)2
Commented by mathlove last updated on 18/Mar/23
thanks dear
thanksdear
Answered by CElcedricjunior last updated on 18/Mar/23
l=((n(n+1))/2)
l=n(n+1)2

Leave a Reply

Your email address will not be published. Required fields are marked *