Menu Close

lim-x-0-ln-1-sinx-sinx-with-out-H-L-Roule-




Question Number 184878 by mathlove last updated on 13/Jan/23
lim_(x→0) ((ln(1+sinx))/(sinx))=?  with out H′L Roule
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left(\mathrm{1}+{sinx}\right)}{{sinx}}=? \\ $$$${with}\:{out}\:{H}'{L}\:{Roule} \\ $$
Answered by aba last updated on 13/Jan/23
let t=sin(x)  x→0, t→0  lim_(x→0) ((ln(1+sin(x)))/(sin(x)))=lim_(t→0) ((ln(1+t))/t)=1
$$\mathrm{let}\:\mathrm{t}=\mathrm{sin}\left(\mathrm{x}\right) \\ $$$$\mathrm{x}\rightarrow\mathrm{0},\:\mathrm{t}\rightarrow\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{sin}\left(\mathrm{x}\right)\right)}{\mathrm{sin}\left(\mathrm{x}\right)}=\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{t}\right)}{\mathrm{t}}=\mathrm{1} \\ $$
Commented by mathlove last updated on 13/Jan/23
thanks a lot sir
$${thanks}\:{a}\:{lot}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *