Menu Close

lim-x-0-ln-7x-1-x-




Question Number 184882 by mathlove last updated on 13/Jan/23
lim_(x→0) ((ln(7x+1))/x)=?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}\left(\mathrm{7}{x}+\mathrm{1}\right)}{{x}}=? \\ $$
Answered by aba last updated on 13/Jan/23
lim_(x→0) ((ln(7x+1))/x)=lim_(x→0) 7((ln(7x+1))/(7x))=7
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\left(\mathrm{7x}+\mathrm{1}\right)}{\mathrm{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}7}\frac{\mathrm{ln}\left(\mathrm{7x}+\mathrm{1}\right)}{\mathrm{7x}}=\mathrm{7} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *