Menu Close

lim-x-0-ln-cosx-x-2-I-have-a-doubt-




Question Number 59542 by Mikael_Marshall last updated on 11/May/19
lim_(x→0)  ((ln(cosx))/x^2 )  I have a doubt
$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\mathrm{ln}\left(\mathrm{cosx}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$$${I}\:{have}\:{a}\:{doubt} \\ $$
Commented by kaivan.ahmadi last updated on 11/May/19
hop  lim_(x→0 )  ((−sinx)/(2xcosx))  =lim_(x→0  ) ((−tgx)/(2x))=  lim_(x→0)   ((−(1+tg^2 x))/2)=((−1)/2)
$${hop} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}\:} \:\frac{−{sinx}}{\mathrm{2}{xcosx}}\:\:={lim}_{{x}\rightarrow\mathrm{0}\:\:} \frac{−{tgx}}{\mathrm{2}{x}}= \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{−\left(\mathrm{1}+{tg}^{\mathrm{2}} {x}\right)}{\mathrm{2}}=\frac{−\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Mikael_Marshall last updated on 11/May/19
oh thank you Sir
$${oh}\:{thank}\:{you}\:{Sir} \\ $$
Commented by maxmathsup by imad last updated on 11/May/19
cosx ∼1−(x^2 /2)   and  ln(1−(x^2 /2))∼−(x^2 /2) ⇒((ln(cosx))/x^2 ) ∼−(1/2) ⇒  lim_(x→0)   ((ln(cosx))/x^2 ) =−(1/2)
$${cosx}\:\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\:\:{and}\:\:{ln}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)\sim−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\frac{{ln}\left({cosx}\right)}{{x}^{\mathrm{2}} }\:\sim−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left({cosx}\right)}{{x}^{\mathrm{2}} }\:=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Mikael_Marshall last updated on 11/May/19
thank you Sir
$${thank}\:{you}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *