Question Number 35736 by rahul 19 last updated on 22/May/18
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left(\mathrm{sec}\:\left({ex}\right)\mathrm{sec}\:\left({e}^{\mathrm{2}} {x}\right)……\mathrm{sec}\:\left({e}^{\mathrm{50}} {x}\right)\right)}{{e}^{\mathrm{2}} −{e}^{\mathrm{2cos}\:{x}} }\:=\:? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 23/May/18
$${this}\:{limit}\:{is}\left(\frac{\mathrm{0}}{\mathrm{0}}\right)\:{form}\:\: \\ $$$$=\frac{{lim}}{{x}\rightarrow\mathrm{0}}\frac{{lnsec}\left({ex}\right)+{lnsec}\left({e}^{\mathrm{2}} {x}\right)+…+{lnsec}\left({e}^{\mathrm{50}} {x}\right)}{{e}^{\mathrm{2}} −{e}^{\mathrm{2}{cosx}} }\: \\ $$$${using}\:{l},{hospital}\:{rule} \\ $$$$=\frac{{lim}}{{x}\rightarrow\mathrm{0}}\frac{{tan}\left({ex}\right)+{tan}\left({e}^{\mathrm{2}} {x}\right)+..+{tan}\left({e}^{\mathrm{50}} {x}\right)}{\mathrm{0}−{e}^{\mathrm{2}{cosx}} ×\left(−\mathrm{2}{sinx}\right)} \\ $$$${deviding}\:{N}_{{r}} \:{and}\:{D}_{{r}} \:{by}\:{x} \\ $$$$=\frac{{lim}}{{x}\rightarrow\mathrm{0}}\frac{{e}\frac{{tan}\left({ex}\right)}{{ex}}+{e}^{\mathrm{2}} \frac{{tan}\left({e}^{\mathrm{2}} {x}\right)}{{e}^{\mathrm{2}} {x}}+..+{e}^{\mathrm{50}} \frac{{tan}\left({e}^{\mathrm{50}} {x}\right)}{{e}^{\mathrm{50}} {x}}}{\mathrm{2}{e}^{\mathrm{2}{cosx}} ×\frac{{sinx}}{{x}}} \\ $$$$=\frac{{e}+{e}^{\mathrm{2}} +{e}^{\mathrm{3}} +…+{e}^{\mathrm{50}} }{\mathrm{2}{e}^{\mathrm{2}} } \\ $$$$=\frac{{e}\left(\frac{{e}^{\mathrm{50}} −\mathrm{1}}{{e}−\mathrm{1}}\right)}{\mathrm{2}{e}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{{e}}×\frac{{e}^{\mathrm{50}} −\mathrm{1}}{{e}−\mathrm{1}} \\ $$
Commented by rahul 19 last updated on 25/May/18
Thank You Sir .
There is a slight error in 2nd line .
It will be e*tan(ex) ,......