Menu Close

lim-x-0-ln-sec-ex-sec-e-2-x-sec-e-50-x-e-2-e-2cos-x-




Question Number 35736 by rahul 19 last updated on 22/May/18
lim_(x→0)  ((ln (sec (ex)sec (e^2 x)......sec (e^(50) x)))/(e^2 −e^(2cos x) )) = ?
limx0ln(sec(ex)sec(e2x)sec(e50x))e2e2cosx=?
Answered by tanmay.chaudhury50@gmail.com last updated on 23/May/18
this limit is((0/0)) form    =((lim)/(x→0))((lnsec(ex)+lnsec(e^2 x)+...+lnsec(e^(50) x))/(e^2 −e^(2cosx) ))   using l,hospital rule  =((lim)/(x→0))((tan(ex)+tan(e^2 x)+..+tan(e^(50) x))/(0−e^(2cosx) ×(−2sinx)))  deviding N_r  and D_r  by x  =((lim)/(x→0))((e((tan(ex))/(ex))+e^2 ((tan(e^2 x))/(e^2 x))+..+e^(50) ((tan(e^(50) x))/(e^(50) x)))/(2e^(2cosx) ×((sinx)/x)))  =((e+e^2 +e^3 +...+e^(50) )/(2e^2 ))  =((e(((e^(50) −1)/(e−1))))/(2e^2 ))  =(1/2)×(1/e)×((e^(50) −1)/(e−1))
thislimitis(00)form=limx0lnsec(ex)+lnsec(e2x)++lnsec(e50x)e2e2cosxusingl,hospitalrule=limx0tan(ex)+tan(e2x)+..+tan(e50x)0e2cosx×(2sinx)devidingNrandDrbyx=limx0etan(ex)ex+e2tan(e2x)e2x+..+e50tan(e50x)e50x2e2cosx×sinxx=e+e2+e3++e502e2=e(e501e1)2e2=12×1e×e501e1
Commented by rahul 19 last updated on 25/May/18
Thank You Sir . There is a slight error in 2nd line .�� It will be e*tan(ex) ,......

Leave a Reply

Your email address will not be published. Required fields are marked *