Menu Close

lim-x-0-ln-sin-2x-ln-sin-4x-




Question Number 91954 by john santu last updated on 04/May/20
lim_(x→0^+ )  ((ln(sin 2x))/(ln(sin 4x)))
limx0+ln(sin2x)ln(sin4x)
Commented by jagoll last updated on 04/May/20
doesn′t exist
doesntexist
Commented by jagoll last updated on 04/May/20
��
Commented by abdomathmax last updated on 04/May/20
hospital theorem  lim_(x→0^+ )   ((ln(sin(2x)))/(ln(sin(4x)))) =lim_(x→0^+ )    (((2cos(2x))/(sin(2x)))/((4cos(4x))/(sin(4x))))  =lim_(x→0^+ )     ((2cos(2x))/(sin(2x)))×((sin(4x))/(4cos(4x)))  =lim_(x→0^+ )    (1/2) ((cos(2x))/(cos(4x)))×((sin(4x))/(sin(2x)))  =(1/2)×1×2 =1
hospitaltheoremlimx0+ln(sin(2x))ln(sin(4x))=limx0+2cos(2x)sin(2x)4cos(4x)sin(4x)=limx0+2cos(2x)sin(2x)×sin(4x)4cos(4x)=limx0+12cos(2x)cos(4x)×sin(4x)sin(2x)=12×1×2=1
Commented by jagoll last updated on 04/May/20
yes ������

Leave a Reply

Your email address will not be published. Required fields are marked *