Menu Close

lim-x-0-ln-x-cot-x-




Question Number 92056 by john santu last updated on 04/May/20
lim_(x→0^+ )  ((ln(x))/(cot x))
limx0+ln(x)cotx
Commented by Prithwish Sen 1 last updated on 05/May/20
lim_(x→0)  x.((Σ_(k=1) ^∞ (−1)^(k+1) (((x−1)^k )/k))/(1−Σ_(k=1) ^∞ (2^(2k) /((2k)!))∣B_(2k) ∣x^(2k) ))= (0/(1−0)) = 0
limx0x.k=1(1)k+1(x1)kk1k=122k(2k)!B2kx2k=010=0
Commented by mathmax by abdo last updated on 04/May/20
f(x)=((lnx)/(cotanx)) ⇒f(x) =ln(x).tanx =((sinx lnx)/(cosx))  sinx lnx ∼ xln(x)→0   (x→0)  and cosx ∼1 ⇒  lim_(x→0^+ )   f(x)=0
f(x)=lnxcotanxf(x)=ln(x).tanx=sinxlnxcosxsinxlnxxln(x)0(x0)andcosx1limx0+f(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *