Menu Close

lim-x-0-log-e-sin-a-1-x-sin-a-x-0-lt-a-lt-pi-2-




Question Number 34522 by rahul 19 last updated on 07/May/18
lim_(x→0)  log _e {((sin (a+(1/x)))/(sin a))}^x , 0<a<(π/2) .
limx0loge{sin(a+1x)sina}x,0<a<π2.
Commented by rahul 19 last updated on 08/May/18
?
?
Commented by math khazana by abdo last updated on 09/May/18
let put A(x)=ln{((sin(a+(1/x)))/(sina))}^x  we have  A(x) =x { ln(a +(1/x)) −ln(sina)}  =x{ ln(1+ax) −lnx  −ln(sina)}  =x ln(1+ax)  −xlnx  −x ln(sina) ⇒  lim_(x→0)  A(x) =lim_(x→0)  x ln(1+ax)   but  ln(1+ax) ∼ ax ⇒ lim_(x→0) A(x)   =lim_(x→0)  ax^2  =0
letputA(x)=ln{sin(a+1x)sina}xwehaveA(x)=x{ln(a+1x)ln(sina)}=x{ln(1+ax)lnxln(sina)}=xln(1+ax)xlnxxln(sina)limx0A(x)=limx0xln(1+ax)butln(1+ax)axlimx0A(x)=limx0ax2=0

Leave a Reply

Your email address will not be published. Required fields are marked *