Menu Close

lim-x-0-log-sin-x-cos-x-log-sin-x-2-cos-x-2-




Question Number 157123 by cortano last updated on 20/Oct/21
   lim_(x→0)  ((log _(sin x) (cos x))/(log _(sin ((x/2))) (cos (x/2))))=?
limx0logsinx(cosx)logsin(x2)(cosx2)=?
Commented by john_santu last updated on 21/Oct/21
L=lim_(x→0)  ((ln (cos x) ln (sin (x/2)))/(ln (cos (x/2)).ln (sin x)))  L=lim_(x→0)  (((ln (cos x))/(ln (cos (x/2))))).lim_(x→0) (((ln (sin (x/2)))/(ln (sin x))))  L=lim_(y→0) (((ln (cos 2y))/(ln (cos y)))).lim_(y→0) (((ln (sin y))/(ln (sin 2y))))  L=lim_(y→0) ((((−2sin 2y)/(cos 2y))/((−sin y)/(cos y)))).lim_(y→0) ((((cos y)/(sin y))/((2cos 2y)/(sin 2y))))  L=lim_(y→0) (((2tan 2y)/(tan y))).lim_(y→0) (((cot y)/(2cot 2y)))  L=4×lim_(y→0) (((tan 2y)/(2tan y)))=4×1=4
L=limx0ln(cosx)ln(sinx2)ln(cosx2).ln(sinx)L=limx0(ln(cosx)ln(cosx2)).limx0(ln(sinx2)ln(sinx))L=limy0(ln(cos2y)ln(cosy)).limy0(ln(siny)ln(sin2y))L=limy0(2sin2ycos2ysinycosy).limy0(cosysiny2cos2ysin2y)L=limy0(2tan2ytany).limy0(coty2cot2y)L=4×limy0(tan2y2tany)=4×1=4

Leave a Reply

Your email address will not be published. Required fields are marked *