Menu Close

lim-x-0-r-1-2n-1-r-n-please-help-




Question Number 50293 by pooja24 last updated on 15/Dec/18
lim_(x→0)  Σ_(r=1) ^(2n) ((1/(r+n)))=?  please help
limx02nr=1(1r+n)=?pleasehelp
Commented by maxmathsup by imad last updated on 15/Dec/18
let S_n =Σ_(k=1) ^(2n)  (1/(k+n)) ⇒S_n =Σ_(k=1) ^n  (1/(k+n)) +Σ_(k=n+1) ^(2n)  (1/(k+n)) =A_n  +B_n   we have A_n =(1/n) Σ_(k=1) ^n   (1/(1+(k/n))) →_(n→+∞)   ∫_0 ^1   (dx/(1+x)) =ln∣1+x∣]_0 ^1 =ln(2)  changement k−n =p  give B_n =Σ_(p=1) ^n   (1/(n+p+n)) =Σ_(p=1) ^n   (1/(p+2n))  =(1/n) Σ_(p=1) ^n   (1/(2+(p/n))) →_(n→+∞)   ∫_0 ^1    (dx/(2+x)) =[ln∣2+x∣]_0 ^1  =ln(x)−ln(2) ⇒  lim_(n→+∞)  S_n  =lim_(n→+∞ ) (A_n +B_n )=ln(2)+ln(3)−ln(2) =ln(3)
letSn=k=12n1k+nSn=k=1n1k+n+k=n+12n1k+n=An+BnwehaveAn=1nk=1n11+knn+01dx1+x=ln1+x]01=ln(2)changementkn=pgiveBn=p=1n1n+p+n=p=1n1p+2n=1np=1n12+pnn+01dx2+x=[ln2+x]01=ln(x)ln(2)limn+Sn=limn+(An+Bn)=ln(2)+ln(3)ln(2)=ln(3)
Commented by maxmathsup by imad last updated on 15/Dec/18
∫_0 ^1   (dx/(2+x)) =ln(3)−ln(2).
01dx2+x=ln(3)ln(2).
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Dec/18
there is no ∞ in question...
thereisnoinquestion
Commented by maxmathsup by imad last updated on 15/Dec/18
i think the Queston is find lim_(n→+∞) Σ_(r=1) ^(2n)  (1/(r+n))
ithinktheQuestonisfindlimn+r=12n1r+n
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Dec/18
T_r =(1/(r+n))  T_1 =(1/(1+n))  T_2 =(1/(2+n))  ..  ...  T_(2n) =(1/(2n+n))  S_(2n) =(1/(1+n))+(1/(2+n))+(1/(3+n))+...+(1/(2n+n))  now   (1/(1+n))<(1/n)  (1/(2+n))<(1/n)  ...  ...  (1/(2n+n))<(1/n)  so S_(2n) <2n×(1/n)  S_(2n) <2  in the problem no mention of x, so pls check  the question...  S_(2n) =Σ_(r=1) ^(2n) (1/(r+n))<2                    lim_(x→0)
Tr=1r+nT1=11+nT2=12+n..T2n=12n+nS2n=11+n+12+n+13+n++12n+nnow11+n<1n12+n<1n12n+n<1nsoS2n<2n×1nS2n<2intheproblemnomentionofx,soplscheckthequestionS2n=2nr=11r+n<2limx0
Answered by ajfour last updated on 15/Dec/18
lim_(n→∞)  Σ_(r=1) ^(2n)  (1/(r+n)) = ∫_0 ^(  2) (dx/(x+1)) = ln 3 .
limn2nr=11r+n=02dxx+1=ln3.
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Dec/18
there is no ∞ in question...
thereisnoinquestion

Leave a Reply

Your email address will not be published. Required fields are marked *