Menu Close

lim-x-0-sin-1-x-x-




Question Number 113747 by faysal last updated on 15/Sep/20
lim_(x→0) ((sin^(−1) x)/x)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}^{−\mathrm{1}} {x}}{{x}} \\ $$
Answered by bemath last updated on 15/Sep/20
 lim_(x→0)  ((d(sin^(−1) x))/dx) = lim_(x→0)  ((1/( (√(1−x^2 ))))/1) = 1
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{d}\left(\mathrm{sin}^{−\mathrm{1}} {x}\right)}{{dx}}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}}{\mathrm{1}}\:=\:\mathrm{1} \\ $$
Answered by Olaf last updated on 15/Sep/20
x = sinu  lim_(x→0) ((sin^(−1) x)/x) = lim_(u→0) (u/(sinu)) = 1  (usual limit)
$${x}\:=\:\mathrm{sin}{u} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}^{−\mathrm{1}} {x}}{{x}}\:=\:\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{u}}{\mathrm{sin}{u}}\:=\:\mathrm{1} \\ $$$$\left(\mathrm{usual}\:\mathrm{limit}\right) \\ $$
Commented by Ar Brandon last updated on 15/Sep/20
Salut monsieur. Heureux de vous revoir��
Answered by Dwaipayan Shikari last updated on 15/Sep/20
lim_(x→0) (((x+(x^3 /6)))/x)=1+(x^2 /6)=1
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({x}+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\right)}{{x}}=\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{6}}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *