Menu Close

lim-x-0-sin-2x-3x-




Question Number 111259 by bobhans last updated on 03/Sep/20
   lim_(x→0^+ )  ((sin 2x)/( (√(3x)))) ?
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{2x}}{\:\sqrt{\mathrm{3x}}}\:? \\ $$
Commented by bobhans last updated on 03/Sep/20
  lim_(x→0^+ )  ((sin 2x)/( (√(3x)))) . ((√(3x))/( (√(3x)))) = lim_(x→0^+ )  (((√(3x)) sin 2x)/(3x))    =lim_(x→0^+ )  ((2(√(3x)))/3) × lim_(x→0^+ ) ((sin 2x)/(2x)) = 0×1=0
$$\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{2x}}{\:\sqrt{\mathrm{3x}}}\:.\:\frac{\sqrt{\mathrm{3x}}}{\:\sqrt{\mathrm{3x}}}\:=\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\sqrt{\mathrm{3x}}\:\mathrm{sin}\:\mathrm{2x}}{\mathrm{3x}} \\ $$$$\:\:=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{2}\sqrt{\mathrm{3x}}}{\mathrm{3}}\:×\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{2x}}{\mathrm{2x}}\:=\:\mathrm{0}×\mathrm{1}=\mathrm{0} \\ $$
Answered by abdomsup last updated on 03/Sep/20
ch .(√x)=t give lim_(x→0^+ )   ((sin(2x))/( (√3)(√x)))  =lim_(t→0^+ )   ((sin(2t^2 ))/(t(√3)))  =lim_(t→0^+ )     ((2t)/( (√3))) ×((sin(2t^2 ))/(2t^2 ))  =0×1=0
$${ch}\:.\sqrt{{x}}={t}\:{give}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\frac{{sin}\left(\mathrm{2}{x}\right)}{\:\sqrt{\mathrm{3}}\sqrt{{x}}} \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\frac{{sin}\left(\mathrm{2}{t}^{\mathrm{2}} \right)}{{t}\sqrt{\mathrm{3}}} \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}^{+} } \:\:\:\:\frac{\mathrm{2}{t}}{\:\sqrt{\mathrm{3}}}\:×\frac{{sin}\left(\mathrm{2}{t}^{\mathrm{2}} \right)}{\mathrm{2}{t}^{\mathrm{2}} } \\ $$$$=\mathrm{0}×\mathrm{1}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *