Menu Close

lim-x-0-sin-6x-tan-5x-how-to-solve-this-w-o-L-hospital-s-rule-




Question Number 62874 by solihin last updated on 26/Jun/19
lim_(x→0) ((sin(6x))/(tan(5x)))    how  to  solve  this  w/o  L′hospital′s  rule?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sin}\left(\mathrm{6}{x}\right)}{{tan}\left(\mathrm{5}{x}\right)} \\ $$$$ \\ $$$${how}\:\:{to}\:\:{solve}\:\:{this}\:\:{w}/{o}\:\:{L}'{hospital}'{s}\:\:{rule}? \\ $$
Commented by kaivan.ahmadi last updated on 26/Jun/19
lim_(x→0) ((sin6x)/(6x))×((5x)/(tan5x))×(6/5)=1×1×(6/5)=(6/5)
$${lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}\mathrm{6}{x}}{\mathrm{6}{x}}×\frac{\mathrm{5}{x}}{{tan}\mathrm{5}{x}}×\frac{\mathrm{6}}{\mathrm{5}}=\mathrm{1}×\mathrm{1}×\frac{\mathrm{6}}{\mathrm{5}}=\frac{\mathrm{6}}{\mathrm{5}} \\ $$
Commented by solihin last updated on 26/Jun/19
wow  thx
$${wow}\:\:{thx} \\ $$
Commented by mathmax by abdo last updated on 26/Jun/19
lim_(x→0)   ((sin(6x))/(tan(5x))) =lim_(x→0)     ((6cosx)/(5(1+tan^2 (5x)))) =(6/5)
$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{sin}\left(\mathrm{6}{x}\right)}{{tan}\left(\mathrm{5}{x}\right)}\:={lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{\mathrm{6}{cosx}}{\mathrm{5}\left(\mathrm{1}+{tan}^{\mathrm{2}} \left(\mathrm{5}{x}\right)\right)}\:=\frac{\mathrm{6}}{\mathrm{5}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *