Menu Close

lim-x-0-sin-picos-2-x-x-2-why-it-can-not-be-solved-this-way-lim-x-0-sin-picos-2-x-x-2-lim-x-0-sin-picos-2-x-picos-2-x-lim-x-0-picos-2-x-x-2-pi-lim-x-0-cos-2-x-x-2




Question Number 60386 by Kunal12588 last updated on 20/May/19
lim_(x→0) ((sin(πcos^2 x))/x^2 )  why it can not be solved this way  lim_(x→0)  ((sin(πcos^2 x))/x^2 )  =lim_(x→0)  ((sin(πcos^2 x))/(πcos^2 x))×lim_(x→0)  ((πcos^2 x)/x^2 )  =π × lim_(x→0) ((cos^2 x)/x^2 )  but it is not equal to π
limx0sin(πcos2x)x2whyitcannotbesolvedthiswaylimx0sin(πcos2x)x2=limx0sin(πcos2x)πcos2x×limx0πcos2xx2=π×limx0cos2xx2butitisnotequaltoπ
Commented by mr W last updated on 20/May/19
lim_(x→0)  ((sin(πcos^2 x))/(πcos^2 x))=((sin π)/(π×1))=(0/π)=0≠π  lim_(x→0)  ((πcos^2 x)/x^2 )=(π/0)→∞
limx0sin(πcos2x)πcos2x=sinππ×1=0π=0πlimx0πcos2xx2=π0
Commented by mr W last updated on 20/May/19
or  lim_(x→0) ((sin(πcos^2 x))/x^2 )    (→(0/0))  =lim_(x→0) ((cos (πcos^2 x)(− π 2 cos x sin x))/(2x))  =lim_(x→0) (((−1)(− π) sin x)/x)  =π lim_(x→0) ((sin x)/x)  =π
orlimx0sin(πcos2x)x2(00)=limx0cos(πcos2x)(π2cosxsinx)2x=limx0(1)(π)sinxx=πlimx0sinxx=π
Commented by prakash jain last updated on 20/May/19
Limit of product of two function = product of limits this is only true if both limit exist and finite.
Commented by Mr X pcx last updated on 20/May/19
another way  we hsve cosx∼1−(x^2 /2) ⇒  cos^2 x ∼1−x^2  +(x^4 /4) ∼1−x^2  +o(x^4 ) ⇒  πcos^2 x∼π−π x^2  ⇒((sin(πcos^2 x))/x^2 )  ∼ ((sin(πx^2 ))/x^2 ) ∼((πx^2 )/x^2 ) (=π) ⇒  lim_(x−0) ((sin(π cos^2 x))/x^2 ) =π .
anotherwaywehsvecosx1x22cos2x1x2+x441x2+o(x4)πcos2xππx2sin(πcos2x)x2sin(πx2)x2πx2x2(=π)limx0sin(πcos2x)x2=π.
Answered by mr W last updated on 20/May/19
lim_(x→0) ((sin(πcos^2 x))/x^2 )  =lim_(x→0) ((sin(π−π sin^2  x))/x^2 )  =lim_(x→0) ((sin(π sin^2  x))/x^2 )  =lim_(x→0) {((sin(π sin^2  x))/(π sin^2  x))×π×(((sin x)/x))^2 }  =1×π×1^2   =π
limx0sin(πcos2x)x2=limx0sin(ππsin2x)x2=limx0sin(πsin2x)x2=limx0{sin(πsin2x)πsin2x×π×(sinxx)2}=1×π×12=π
Commented by Prithwish sen last updated on 20/May/19
Sir I think it will be   lim_(x→0) ((sin(π−πcos^2 x))/x^2 ) (2^(nd)  line)  please check.
SirIthinkitwillbelimx0sin(ππcos2x)x2(2ndline)pleasecheck.
Commented by Kunal12588 last updated on 20/May/19
yes sir i know the answer this way but  why it can not be solved the way i have written
yessiriknowtheanswerthiswaybutwhyitcannotbesolvedthewayihavewritten
Commented by mr W last updated on 20/May/19
cos^2  x=1−sin^2  x  ⇒π cos^2  x=π−π sin^2  x  ⇒sin (π cos^2  x)=sin (π−π sin^2  x)
cos2x=1sin2xπcos2x=ππsin2xsin(πcos2x)=sin(ππsin2x)
Commented by Prithwish sen last updated on 21/May/19
Yes sir you are right. Please forgive .
Yessiryouareright.Pleaseforgive.
Commented by mr W last updated on 22/May/19
no problem sir!
noproblemsir!

Leave a Reply

Your email address will not be published. Required fields are marked *