Menu Close

lim-x-0-sin-x-cos-x-pi-2sin-x-pi-




Question Number 121527 by benjo_mathlover last updated on 09/Nov/20
 lim_(x→0)  ((sin x cos x)/( (√(π+2sin x)) −(√π))) ?
limx0sinxcosxπ+2sinxπ?
Answered by Dwaipayan Shikari last updated on 09/Nov/20
lim_(x→0) ((xcosx)/(π+2sinx−π))((√(π+2sinx))+(√π))  =(x/(2sinx))((√π)+(√π))         (sinx→x   and x→0)  =((2(√π))/2)=(√π)
limx0xcosxπ+2sinxπ(π+2sinx+π)=x2sinx(π+π)(sinxxandx0)=2π2=π
Answered by liberty last updated on 09/Nov/20
 lim_(x→0)  ((sin x cos x)/( (√π) ((√(1+((2sin x)/π)))−1 ))) =  lim_(x→0)  ((cos x)/( (√π))). ((sin x)/((1+((sin x)/π))−1)) =   (1/( (√π))) × lim_(x→0)  ((π sin x)/(sin x)) = (π/( (√π))) = (√π) .
limx0sinxcosxπ(1+2sinxπ1)=limx0cosxπ.sinx(1+sinxπ)1=1π×limx0πsinxsinx=ππ=π.

Leave a Reply

Your email address will not be published. Required fields are marked *