Menu Close

lim-x-0-sin-x-tan-x-1-x-2-1-3-1-1-sin-x-1-




Question Number 97199 by bobhans last updated on 07/Jun/20
lim_(x→0) ((sin x−tan x)/((((1+x^2 ))^(1/(3  )) −1)((√(1+sin x))−1))) = ?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{x}−\mathrm{tan}\:\mathrm{x}}{\left(\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{1}\right)\left(\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}−\mathrm{1}\right)}\:=\:? \\ $$
Answered by john santu last updated on 07/Jun/20
lim_(x→0)  ((tan (x) (cos x−1))/((((1+x^2 ))^(1/(3  )) −1)((√(1+sin x))−1))) =  lim_(x→0)  ((tan (x) (−2sin^2 ((x/2))))/((1+(x^2 /3)−1)(1+((sin (x))/2)−1))) =  lim_(x→0)  ((−2×(1/4)x^3 )/((1/6)x^3 )) = −(1/2)×(6/1)=−3
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left({x}\right)\:\left(\mathrm{cos}\:{x}−\mathrm{1}\right)}{\left(\sqrt[{\mathrm{3}\:\:}]{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{1}\right)\left(\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}−\mathrm{1}\right)}\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left({x}\right)\:\left(−\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)}{\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}−\mathrm{1}\right)\left(\mathrm{1}+\frac{\mathrm{sin}\:\left({x}\right)}{\mathrm{2}}−\mathrm{1}\right)}\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}{x}^{\mathrm{3}} }{\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} }\:=\:−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{6}}{\mathrm{1}}=−\mathrm{3} \\ $$
Commented by bobhans last updated on 07/Jun/20
yesss....sir
$$\mathrm{yesss}….\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *