Menu Close

lim-x-0-sin-x-x-




Question Number 44085 by rk last updated on 21/Sep/18
lim x→0 [((sin ∣x∣)/x)]
$${lim}\:\mathrm{x}\rightarrow\mathrm{0}\:\left[\frac{\mathrm{sin}\:\mid{x}\mid}{{x}}\right] \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 22/Sep/18
Commented by tanmay.chaudhury50@gmail.com last updated on 22/Sep/18
graph of sin∣x∣
$${graph}\:{of}\:{sin}\mid{x}\mid \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 22/Sep/18
Commented by tanmay.chaudhury50@gmail.com last updated on 22/Sep/18
graph of ((sin∣x∣)/x)
$${graph}\:{of}\:\frac{{sin}\mid{x}\mid}{{x}} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 22/Sep/18
Commented by tanmay.chaudhury50@gmail.com last updated on 22/Sep/18
lim_(x→0+)  [((sin∣x∣)/x)]→1 [.]←greatest integer function  lim_(x→0−)  [((sin∣x∣)/x)]→−1  so left hand side limit→−1  right hand side limit→1  so limit does not exist
$$\underset{{x}\rightarrow\mathrm{0}+} {\mathrm{li}{m}}\:\left[\frac{{sin}\mid{x}\mid}{{x}}\right]\rightarrow\mathrm{1}\:\left[.\right]\leftarrow{greatest}\:{integer}\:{function} \\ $$$$\underset{{x}\rightarrow\mathrm{0}−} {\mathrm{lim}}\:\left[\frac{{sin}\mid{x}\mid}{{x}}\right]\rightarrow−\mathrm{1} \\ $$$${so}\:{left}\:{hand}\:{side}\:{limit}\rightarrow−\mathrm{1} \\ $$$${right}\:{hand}\:{side}\:{limit}\rightarrow\mathrm{1}\:\:{so}\:{limit}\:{does}\:{not}\:{exist} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *