Menu Close

lim-x-0-sinx-tanx-




Question Number 28088 by tawa tawa last updated on 20/Jan/18
lim_(x→0^+ )   (sinx)^((tanx))
limx0+(sinx)(tanx)
Commented by çhëý böý last updated on 20/Jan/18
lim_(x→0^+ )    e^(ln sinx^(tanx) )      e^(lim_(x→0^+ )  tan xln x)         l′hopital  e^(lim_(x→0+)   − (((cosx)/(sinx))/((sec^2 x)/(tan^2 x))))     simplify    e^(lim_(x→0^(+ )   )  −((sinx)/(cos^3 x)))    e^(lim_(x→0^+ )  − ((sin(0))/(cos(0)^3 )) =  ((−0)/1) =0)     e^(0 ) =1
limx0+elnsinxtanxelimx0+tanxlnxlhopitalelimx0+cosxsinxsec2xtan2xsimplifyelimx0+sinxcos3xelimx0+sin(0)cos(0)3=01=0e0=1
Commented by abdo imad last updated on 20/Jan/18
x→0^+   mean  x is most near from 0 and x>0  x→0− mean that x is most near from 0 and x<0 .
x0+meanxismostnearfrom0andx>0x0meanthatxismostnearfrom0andx<0.
Commented by tawa tawa last updated on 20/Jan/18
God bless you sir
Godblessyousir
Commented by tawa tawa last updated on 20/Jan/18
please sir. what is the meaning of  0^+  or  0^−   i mean the one at the limit.
pleasesir.whatisthemeaningof0+or0imeantheoneatthelimit.
Commented by çhëý böý last updated on 20/Jan/18
it mean the limit can^′ t at 0 so 0^(+ ) mean  u ar approching from right[positive] side
itmeanthelimitcantat0so0+meanuarapprochingfromright[positive]side
Commented by abdo imad last updated on 20/Jan/18
= lim_(x→0^+ )   e^(tanx ln(sinx))   but  for x∈V(0)   sinx∼x  and  tanx ln(sinx)=((sinx ln(sinx))/(cosx))∼ xlnx  but we have  lim_(x→0^+ )   xlnx =0  ⇒lim_(x→0^+ )   (sinx)^(tanx)  =e^0  =1  .
=limx0+etanxln(sinx)butforxV(0)sinxxandtanxln(sinx)=sinxln(sinx)cosxxlnxbutwehavelimx0+xlnx=0limx0+(sinx)tanx=e0=1.

Leave a Reply

Your email address will not be published. Required fields are marked *