Menu Close

lim-x-0-tan-x-3-2-tan-9-x-




Question Number 104217 by bemath last updated on 20/Jul/20
lim_(x→0) ((tan (x+3)^2 −tan (9))/x) = ?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}\:\left({x}+\mathrm{3}\right)^{\mathrm{2}} −\mathrm{tan}\:\left(\mathrm{9}\right)}{{x}}\:=\:? \\ $$
Answered by bemath last updated on 20/Jul/20
lim_(x→0) ((2(x+3)^1 sec^2 (x+3)^2 )/1) =  2.3.sec^2 (9) = 6 sec^2 (9) ★
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}\left({x}+\mathrm{3}\right)^{\mathrm{1}} \mathrm{sec}\:^{\mathrm{2}} \left({x}+\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{1}}\:= \\ $$$$\mathrm{2}.\mathrm{3}.\mathrm{sec}\:^{\mathrm{2}} \left(\mathrm{9}\right)\:=\:\mathrm{6}\:\mathrm{sec}\:^{\mathrm{2}} \left(\mathrm{9}\right)\:\bigstar\: \\ $$
Answered by Dwaipayan Shikari last updated on 20/Jul/20
lim_(x→0) ((((sin(x+3)^2 )/(cos(x+3)^2 ))−((sin9)/(cos9)))/x)=lim_(x→0) ((sin((x+3)^2 −9))/(cos(x+3)^2 cos9)).(1/x)  (sin(x^2 +6x))=x^2 +6x  lim_(x→0) ((sin(x^2 +6x))/(cos(x+3)^2 cos9)).(1/x)lim_(x→0) ((x^2 +6x)/(cos^2 9)).(1/x)=6 sec^2 9★
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{sin}\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{cos}\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} }−\frac{\mathrm{sin9}}{\mathrm{cos9}}}{\mathrm{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left(\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} −\mathrm{9}\right)}{\mathrm{cos}\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} \mathrm{cos9}}.\frac{\mathrm{1}}{\mathrm{x}}\:\:\left(\mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{6x}\right)\right)=\mathrm{x}^{\mathrm{2}} +\mathrm{6x} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{6x}\right)}{\mathrm{cos}\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} \mathrm{cos9}}.\frac{\mathrm{1}}{\mathrm{x}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{6x}}{\mathrm{cos}^{\mathrm{2}} \mathrm{9}}.\frac{\mathrm{1}}{\mathrm{x}}=\mathrm{6}\:\mathrm{sec}^{\mathrm{2}} \mathrm{9}\bigstar \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *