Menu Close

lim-x-0-tan-x-sin-x-2-4-sin-3-2x-




Question Number 105643 by john santu last updated on 30/Jul/20
lim_(x→0)  ((tan (x−sin x))/(2−(√(4+sin^3  2x))))
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left({x}−\mathrm{sin}\:{x}\right)}{\mathrm{2}−\sqrt{\mathrm{4}+\mathrm{sin}\:^{\mathrm{3}} \:\mathrm{2}{x}}} \\ $$
Answered by bramlex last updated on 30/Jul/20
lim_(x→0)  ((tan (x−(x−(1/6)x^3 )))/(2−2(√(1+((sin^3 2x)/4))))) =   lim_(x→0)  ((tan ((1/6)x^3 ))/(2(1−(1+((sin^3 2x)/8))))) =  lim_(x→0)  ((tan ((1/6)x^3 ))/(−((8/4)x^3 ))) = −(1/6)×(1/2) = −(1/(12))▲
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left({x}−\left({x}−\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} \right)\right)}{\mathrm{2}−\mathrm{2}\sqrt{\mathrm{1}+\frac{\mathrm{sin}\:^{\mathrm{3}} \mathrm{2}{x}}{\mathrm{4}}}}\:=\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} \right)}{\mathrm{2}\left(\mathrm{1}−\left(\mathrm{1}+\frac{\mathrm{sin}\:^{\mathrm{3}} \mathrm{2}{x}}{\mathrm{8}}\right)\right)}\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} \right)}{−\left(\frac{\mathrm{8}}{\mathrm{4}}{x}^{\mathrm{3}} \right)}\:=\:−\frac{\mathrm{1}}{\mathrm{6}}×\frac{\mathrm{1}}{\mathrm{2}}\:=\:−\frac{\mathrm{1}}{\mathrm{12}}\blacktriangle \\ $$
Answered by Dwaipayan Shikari last updated on 30/Jul/20
lim_(x→0) ((tan(x−x+(x^3 /6)))/(4−4−sin^3 2x))(2+(√(4+sin^3 2x)))  lim_(x→0) ((tan(x^3 /6))/(−(2x)^3 ))(2+(√(4+8x^3 )))=lim_(x→0) ((x^3 /6)/(−8x^3 ))(2+(√4))=−(1/(12))    {   (sin2x)^3 →8x^3
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{tan}\left({x}−{x}+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\right)}{\mathrm{4}−\mathrm{4}−{sin}^{\mathrm{3}} \mathrm{2}{x}}\left(\mathrm{2}+\sqrt{\mathrm{4}+{sin}^{\mathrm{3}} \mathrm{2}{x}}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{tan}\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}{−\left(\mathrm{2}{x}\right)^{\mathrm{3}} }\left(\mathrm{2}+\sqrt{\mathrm{4}+\mathrm{8}{x}^{\mathrm{3}} }\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}{−\mathrm{8}{x}^{\mathrm{3}} }\left(\mathrm{2}+\sqrt{\mathrm{4}}\right)=−\frac{\mathrm{1}}{\mathrm{12}}\:\:\:\:\left\{\:\:\:\left({sin}\mathrm{2}{x}\right)^{\mathrm{3}} \rightarrow\mathrm{8}{x}^{\mathrm{3}} \right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *