Menu Close

lim-x-0-tan-x-x-x-5-1-3x-2-




Question Number 176486 by cortano1 last updated on 20/Sep/22
   lim_(x→0)   [ ((tan x−x)/x^5 ) −(1/(3x^2 )) ]=?
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left[\:\frac{\mathrm{tan}\:\mathrm{x}−\mathrm{x}}{\mathrm{x}^{\mathrm{5}} }\:−\frac{\mathrm{1}}{\mathrm{3x}^{\mathrm{2}} }\:\right]=? \\ $$
Answered by blackmamba last updated on 20/Sep/22
= lim_(x→0)  ((3(tan x−x)−x^3 )/(3x^5 ))  = lim_(x→0)  ((3((x+(1/3)x^3 +(2/(15))x^5 +...)−x)−x^3 )/(3x^5 ))  = lim_(x→0)  ((((2/5))x^5 )/(3x^5 )) = (2/(15))
$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3}\left(\mathrm{tan}\:{x}−{x}\right)−{x}^{\mathrm{3}} }{\mathrm{3}{x}^{\mathrm{5}} } \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3}\left(\left({x}+\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} +\frac{\mathrm{2}}{\mathrm{15}}{x}^{\mathrm{5}} +…\right)−{x}\right)−{x}^{\mathrm{3}} }{\mathrm{3}{x}^{\mathrm{5}} } \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\frac{\mathrm{2}}{\mathrm{5}}\right){x}^{\mathrm{5}} }{\mathrm{3}{x}^{\mathrm{5}} }\:=\:\frac{\mathrm{2}}{\mathrm{15}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *