Menu Close

lim-x-0-tan-x-x-x-sin-x-




Question Number 176154 by cortano1 last updated on 14/Sep/22
  lim_(x→0)  ((tan x−x)/(x−sin x)) =?
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{x}−\mathrm{x}}{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}\:=? \\ $$
Answered by adhigenz last updated on 14/Sep/22
= lim_(x→0)  ((sec^2 x−1)/(1−cos x))  =lim_(x→0)  ((1−cos^2 x)/(cos^2 x(1−cos x)))  =lim_(x→0)  (((1−cos x)(1+cos x))/(cos^2 x(1−cos x)))  = lim_(x→0)  ((1+cos x)/(cos^2 x))  = ((1+1)/1)  = 2
$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sec}^{\mathrm{2}} {x}−\mathrm{1}}{\mathrm{1}−\mathrm{cos}\:{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} {x}}{\mathrm{cos}^{\mathrm{2}} {x}\left(\mathrm{1}−\mathrm{cos}\:{x}\right)} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}{\mathrm{cos}^{\mathrm{2}} {x}\left(\mathrm{1}−\mathrm{cos}\:{x}\right)} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{cos}^{\mathrm{2}} {x}} \\ $$$$=\:\frac{\mathrm{1}+\mathrm{1}}{\mathrm{1}} \\ $$$$=\:\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *