Menu Close

lim-x-0-tanx-x-1-x-2-




Question Number 155625 by puissant last updated on 02/Oct/21
lim_(x→0)  (((tanx)/x))^(1/x^2 ) = ?
limx0(tanxx)1x2=?
Answered by yeti123 last updated on 03/Oct/21
lim_(x→0) (((tan x)/x))^(1/x^2 )  = lim_(x→0) (((x + (x^3 /3) + ...)/x))^(1/x^2 )                               = lim_(x→0) (1 + (x^2 /3))^((1/x^2 ) × (x^2 /3) × (3/x^2 ))                               = lim_(x→0) (1 + (x^2 /3))^((3/x^2 ) × (1/3))                               = e^(1/3)
limx0(tanxx)1x2=limx0(x+x33+x)1x2=limx0(1+x23)1x2×x23×3x2=limx0(1+x23)3x2×13=e13
Commented by puissant last updated on 03/Oct/21
thanks..
thanks..
Answered by cortano last updated on 03/Oct/21
 lim_(x→0) (((tan x)/x))^(1/x^2 ) =e^(lim_(x→0) (((tan x−x)/x^3 )))   =e^(1/3)
limx0(tanxx)1x2=elimx0(tanxxx3)=e13

Leave a Reply

Your email address will not be published. Required fields are marked *