Menu Close

lim-x-0-x-1-3-x-1-5-x-1-3-x-1-4-




Question Number 92511 by Ar Brandon last updated on 07/May/20
lim_(x→0)  (((x)^(1/3) −(x)^(1/5) )/( (x)^(1/3) −(x)^(1/4) ))
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{x}}−\sqrt[{\mathrm{5}}]{\mathrm{x}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}−\sqrt[{\mathrm{4}}]{\mathrm{x}}} \\ $$
Commented by john santu last updated on 07/May/20
x = t^(60)   lim_(t→0)  ((t^(20) −t^(12) )/(t^(20) −t^(15) )) = lim_(t→0)  ((t^(12) (t^8 −1))/(t^(15) (t^5 −1)))  = lim_(t→0)  ((t^8 −1)/(t^3 (t^5 −1))) = DNE
$$\mathrm{x}\:=\:\mathrm{t}^{\mathrm{60}} \\ $$$$\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{t}^{\mathrm{20}} −\mathrm{t}^{\mathrm{12}} }{\mathrm{t}^{\mathrm{20}} −\mathrm{t}^{\mathrm{15}} }\:=\:\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{t}^{\mathrm{12}} \left(\mathrm{t}^{\mathrm{8}} −\mathrm{1}\right)}{\mathrm{t}^{\mathrm{15}} \left(\mathrm{t}^{\mathrm{5}} −\mathrm{1}\right)} \\ $$$$=\:\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{t}^{\mathrm{8}} −\mathrm{1}}{\mathrm{t}^{\mathrm{3}} \left(\mathrm{t}^{\mathrm{5}} −\mathrm{1}\right)}\:=\:\mathrm{DNE}\: \\ $$
Commented by Ar Brandon last updated on 07/May/20
��

Leave a Reply

Your email address will not be published. Required fields are marked *