Menu Close

lim-x-0-x-1-a-cos-x-bsin-x-x-5-1-find-a-amp-b-




Question Number 105410 by john santu last updated on 28/Jul/20
lim_(x→0) ((x(1+a cos x)−bsin x)/x^5 ) = 1  find a & b
limx0x(1+acosx)bsinxx5=1finda&b
Answered by bobhans last updated on 29/Jul/20
lim_(x→0) ((x(1+a(1−(1/2)x^2 +(1/(24))x^4 ))−b(x−(1/6)x^3 +(x^5 /(120))))/x^5 )=1  lim_(x→0) ((x(1+a−(1/2)ax^2 +(1/(24))ax^4 )−(bx−(1/6)bx^3 +(b/(120))x^5 ))/x^5 )=1  lim_(x→0) (((1+a−b)x+((1/6)b−(1/2)a)x^3 +((1/(24))a−(1/(120))b)x^5 )/x^5 )=1  (1)1+a−b=0 ; a−b=−1  (2)(1/6)b−(1/2)a=0 ; b=3a  (3)(1/(24))a−(1/(120))b=1;a=(1/5)b  the question inconsistent
limx0x(1+a(112x2+124x4))b(x16x3+x5120)x5=1limx0x(1+a12ax2+124ax4)(bx16bx3+b120x5)x5=1limx0(1+ab)x+(16b12a)x3+(124a1120b)x5x5=1(1)1+ab=0;ab=1(2)16b12a=0;b=3a(3)124a1120b=1;a=15bthequestioninconsistent
Commented by 1549442205PVT last updated on 29/Jul/20
I think that in the question need to give   three unknown
Ithinkthatinthequestionneedtogivethreeunknown
Answered by Dwaipayan Shikari last updated on 29/Jul/20
lim_(x→0) ((x(1+acosx)−bsinx)/x^5 )=((xa(−sinx)+acosx−bcosx)/(5x^4 ))  =((xa(−cosx)+a(−sinx)+a(−sinx)+bsinx)/(20x^3 ))  =((xasinx+a(−cosx)+a(−cosx)+a(−cosx)+bcosx)/(60x^2 ))  =((xacosx+asinx+3asinx−bsinx)/(120x))or((xa(−sinx)+acosx+4acosx−bcosx)/(120))  =((acosx)/(120))+((ax)/(120x))+((3ax)/(120x))−((bx)/(120x))     or  ((5acosx−bcosx)/(120))  =(a/(24))−(b/(120))                                            ⇒(a/(24))−(b/(120))=1  5a−b=120→(1)  lim_(x→0) ((x(1+acosx)−bsinx)/x^5 )=1  1+acosx−b=0  1+a=b→(2)  5a−1−a=120  a=((121)/4)  b=((125)/4)
limx0x(1+acosx)bsinxx5=xa(sinx)+acosxbcosx5x4=xa(cosx)+a(sinx)+a(sinx)+bsinx20x3=xasinx+a(cosx)+a(cosx)+a(cosx)+bcosx60x2=xacosx+asinx+3asinxbsinx120xorxa(sinx)+acosx+4acosxbcosx120=acosx120+ax120x+3ax120xbx120xor5acosxbcosx120=a24b120a24b120=15ab=120(1)limx0x(1+acosx)bsinxx5=11+acosxb=01+a=b(2)5a1a=120a=1214b=1254
Commented by 1549442205PVT last updated on 30/Jul/20
“ lim((x(1+acosx)−bsinx)/x^5 )=1  1+acosx−b=0  ”(1)  I think that ocurred a mistake at this  place.It is only possible   1+acosx−b=0⇒ lim((x(1+acosx)−bsinx)/x^5 )=1  and it is impossible  ⇒lim((x(1+acosx)−bsinx)/x^5 )=1⇒1+acosx−b=0  it is also like as 1+acosx−kb=0  ⇒lim((x(1+acosx)−bsinx)/x^5 )=1  If (1) is true then  1+acosx−kb=0  is also true.Sir should see once again  sir′argument
limx(1+acosx)bsinxx5=11+acosxb=0(1)Ithinkthatocurredamistakeatthisplace.Itisonlypossible1+acosxb=0limx(1+acosx)bsinxx5=1anditisimpossiblelimx(1+acosx)bsinxx5=11+acosxb=0itisalsolikeas1+acosxkb=0limx(1+acosx)bsinxx5=1If(1)istruethen1+acosxkb=0isalsotrue.Sirshouldseeonceagainsirargument

Leave a Reply

Your email address will not be published. Required fields are marked *