Menu Close

lim-x-0-x-1-ln-xsin-x-3-




Question Number 172872 by mnjuly1970 last updated on 02/Jul/22
       lim_( x→ 0^+ ) (x^( (1/(ln(xsin(x^3 ))))) )=?
limx0+(x1ln(xsin(x3)))=?
Answered by mnjuly1970 last updated on 02/Jul/22
     e^( lim _(x→0^+ ) ln x^( (1/((ln(xsin(x^( 3) ))))) ) =e^( lim_( x→0^+ )  ((ln(x))/(ln(x)+ln(sin(x^( 3) )))))      = e^( lim_( x→0^( +) ) ((1/x)/((1/x) + ((3x^( 2) cos(x^( 3) ))/(sin(x^( 3) )))))) =      = e^( lim_( x→0^( +) ) ((1/x)/((1/x) + (3/x))) =lim((1/4))) =(e)^(1/4)
elimx0+lnx1(ln(xsin(x3))=elimx0+ln(x)ln(x)+ln(sin(x3))=elimx0+1x1x+3x2cos(x3)sin(x3)==elimx0+1x1x+3x=lim(14)=e4
Answered by Mathspace last updated on 02/Jul/22
=lim_(x→0^+ )   e^((lnx)/(xln(sinx)))   lim_(x→0^+ )    xln(sinx)=lim_(x→0^+ ) xlnx=o^−   lim_(x→0^+ )   lnx=−∞ ⇒  lim_(x→0^+ )   e^((lnx)/(xln(sinx))) =e^(+∞) =+∞
=limx0+elnxxln(sinx)limx0+xln(sinx)=limx0+xlnx=olimx0+lnx=limx0+elnxxln(sinx)=e+=+
Commented by mnjuly1970 last updated on 02/Jul/22
pls  recheck the answer sir
plsrechecktheanswersir
Answered by floor(10²Eta[1]) last updated on 02/Jul/22
L=lim_(x→0^+ ) x^(1/(ln(xsin(x^3 ))))   lnL=lim_(x→0^+ ) ((lnx)/(ln(xsin(x^3 ))))=lim_(x→0^+ ) ((1/x)/((sin(x^3 )+3x^3 cos(x^3 ))/(xsin(x^3 ))))  =lim_(x→0^+ ) ((sin(x^3 ))/(sin(x^3 )+3x^3 cos(x^3 )))  =lim_(x→0^+ ) ((3x^2 cos(x^3 ))/(12x^2 cos(x^3 )−9x^4 sin(x^3 )))  =lim_(x→0^+ ) ((3cos(x^3 ))/(12cos(x^3 )−9x^2 sin(x^3 )))=(3/(12))=(1/4)  ⇒lnL=(1/4)⇒L=(e)^(1/4)
L=limxx0+1ln(xsin(x3))lnL=limx0+lnxln(xsin(x3))=limx0+1xsin(x3)+3x3cos(x3)xsin(x3)=limx0+sin(x3)sin(x3)+3x3cos(x3)=limx0+3x2cos(x3)12x2cos(x3)9x4sin(x3)=limx0+3cos(x3)12cos(x3)9x2sin(x3)=312=14lnL=14L=e4
Commented by mnjuly1970 last updated on 03/Jul/22
     thanks alot...very nice solution
thanksalotverynicesolution
Answered by a.lgnaoui last updated on 04/Jul/22
lnL=ln[x^(1/(ln(xsin (x^3 )))) ]=(1/(ln(xsin (x^3 ))))×lnx  =((lnx)/(ln(xsin (x^3 ))))=((lnx)/(ln[x^4 ×(((sin (x^3 ))/x^3 ) )]))  lim_(x→0) (((sin x)/x))=lim_(x→0) ((sin (x^3 ))/x^3 )=1  lnL=((lnx)/(ln(x^4 )))=(1/4)⇒L=e^(1/4) =^4 (√e).
lnL=ln[x1ln(xsin(x3))]=1ln(xsin(x3))×lnx=lnxln(xsin(x3))=lnxln[x4×(sin(x3)x3)]limx0(sinxx)=limx0sin(x3)x3=1lnL=lnxln(x4)=14L=e14=4e.

Leave a Reply

Your email address will not be published. Required fields are marked *