Menu Close

lim-x-0-x-1-x-1-x-




Question Number 104606 by john santu last updated on 22/Jul/20
lim_(x→0) {((x−1)/(∣x−1∣)) + ∣x∣}=?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{\frac{{x}−\mathrm{1}}{\mid{x}−\mathrm{1}\mid}\:+\:\mid{x}\mid\right\}=? \\ $$
Answered by bobhans last updated on 22/Jul/20
(1)lim_(x→0^+ ) {((x−1)/(∣x−1∣)) + ∣x∣ } = lim_(x→0^+ ) {((x−1)/(x−1))+x}=1  (2) lim_(x→0^− ) {((x−1)/(∣x−1∣))−x}=lim_(x→0^+ ) {((x−1)/(x−1))−x}=1
$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left\{\frac{{x}−\mathrm{1}}{\mid{x}−\mathrm{1}\mid}\:+\:\mid{x}\mid\:\right\}\:=\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left\{\frac{{x}−\mathrm{1}}{{x}−\mathrm{1}}+{x}\right\}=\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\left\{\frac{{x}−\mathrm{1}}{\mid{x}−\mathrm{1}\mid}−{x}\right\}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left\{\frac{{x}−\mathrm{1}}{{x}−\mathrm{1}}−{x}\right\}=\mathrm{1} \\ $$
Answered by bramlex last updated on 22/Jul/20

Leave a Reply

Your email address will not be published. Required fields are marked *