Menu Close

lim-x-0-x-1-x-2-sin-x-1-x-2-x-1-x-3-




Question Number 176035 by cortano1 last updated on 11/Sep/22
   lim_(x→0)  ((x (√(1+x^2 )) −sin x)/((1+x^2 )^x −(√(1+x^3 )))) =
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:−\mathrm{sin}\:\mathrm{x}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{x}} −\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }}\:= \\ $$
Answered by Ar Brandon last updated on 11/Sep/22
L=lim_(x→0) ((x(√(1+x^2 ))−sinx)/((1+x^2 )^x −(√(1+x^3 ))))=lim_(x→0) ((x(1+(x^2 /2))−(x−(x^3 /(3!))))/((1+x^3 )−(1+(x^3 /2))))      =lim_(x→0) ((x+(x^3 /2)−(x−(x^3 /6)))/(x^3 /2))=lim_(x→0) (((x^3 /2)+(x^3 /6))/(x^3 /2))=(((4/6))/(1/2))=(4/3)
$$\mathscr{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{sin}{x}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{x}} −\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)−\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\right)}{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)−\left(\mathrm{1}+\frac{{x}^{\mathrm{3}} }{\mathrm{2}}\right)} \\ $$$$\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}+\frac{{x}^{\mathrm{3}} }{\mathrm{2}}−\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\right)}{\frac{{x}^{\mathrm{3}} }{\mathrm{2}}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{x}^{\mathrm{3}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}{\frac{{x}^{\mathrm{3}} }{\mathrm{2}}}=\frac{\left(\mathrm{4}/\mathrm{6}\right)}{\mathrm{1}/\mathrm{2}}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$
Commented by cortano1 last updated on 11/Sep/22
Yes
$$\mathrm{Yes} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *