Menu Close

lim-x-0-x-1-x-note-greatest-integer-function-




Question Number 105036 by bobhans last updated on 25/Jul/20
lim_(x→0) x.[ (1/x) ] ?  note [ ] = greatest integer function
limx0x.[1x]?note[]=greatestintegerfunction
Answered by john santu last updated on 25/Jul/20
the limit as x→0^+  can be  transformed into lim_(p→∞) ((⌊ p ⌋)/p)   set { p } = p − ⌊ p ⌋   we have ((⌊ p ⌋)/p) = 1− (({p})/p) , since  0≤ {p} < 1 . so lim_(p→∞) (1−(({p})/p))=  1−0 = 1 .similarly for  the limit as x→0^−    (JS ♠⧫)
thelimitasx0+canbetransformedintolimpppset{p}=ppwehavepp=1{p}p,since0{p}<1.solimp(1{p}p)=10=1.similarlyforthelimitasx0(JS)
Answered by mathmax by abdo last updated on 25/Jul/20
we have [(1/x)] ≤(1/x)<[(1/x)] +1 ⇒ for x>0 ⇒x[(1/x)]≤1<x[(1/x)]+x ⇒   { ((x[(1/x)]≤1  ⇒   1−x <x[(1/x)]≤1  we passe to limit  (x→o^+ ) ⇒)),((1−x<x[(1/x)])) :}  lim_(x→0^+ )    x[(1/x)] =1
wehave[1x]1x<[1x]+1forx>0x[1x]1<x[1x]+x{x[1x]11x<x[1x]1wepassetolimit(xo+)1x<x[1x]limx0+x[1x]=1

Leave a Reply

Your email address will not be published. Required fields are marked *