Menu Close

lim-x-0-x-2-1-ln-x-




Question Number 79181 by naka3546 last updated on 23/Jan/20
lim_(x→ 0^+ )   (x^2  + 1)^(ln x)   =  ...
$$\underset{{x}\rightarrow\:\mathrm{0}^{+} } {\mathrm{lim}}\:\:\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)^{\mathrm{ln}\:{x}} \:\:=\:\:… \\ $$
Commented by john santu last updated on 23/Jan/20
 lim_(x→0^+ )  {(1+x^2 )^(1/x^2 ) }^(x^2 ln(x)) =  e^(lim_(x→0^+ )  ln(x^x^2  )) = e^0 =1
$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left\{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \right\}^{{x}^{\mathrm{2}} {ln}\left({x}\right)} = \\ $$$${e}^{\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:{ln}\left({x}^{{x}^{\mathrm{2}} } \right)} =\:{e}^{\mathrm{0}} =\mathrm{1} \\ $$
Answered by MJS last updated on 23/Jan/20
lim_(x→0^+ )  (ln x ln (x^2 +1)) =lim_(x→0^+ )  ((ln (x^2 +1))/(1/(ln x))) =       [L′Hospital]  =lim_(x→0^+ )  (((2x)/(x^2 +1))/(−(1/(x(ln x)^2 ))))=−2lim_(x→0^+ ) (((xln x)^2 )/(x^2 +1)) =0  ⇒  lim_(x→0^+ )  (x^2 +1)^(ln x)  =1
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left(\mathrm{ln}\:{x}\:\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)\right)\:=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{\frac{\mathrm{1}}{\mathrm{ln}\:{x}}}\:= \\ $$$$\:\:\:\:\:\left[\mathrm{L}'\mathrm{Hospital}\right] \\ $$$$=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}}{−\frac{\mathrm{1}}{{x}\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} }}=−\mathrm{2}\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\left({x}\mathrm{ln}\:{x}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{1}}\:=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{ln}\:{x}} \:=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *