Menu Close

lim-x-0-x-2-tanxsinx-grestest-integer-function-




Question Number 60410 by tanmay last updated on 20/May/19
lim_(x→0)  [(x^2 /(tanxsinx))] [.]=grestest integer function
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\frac{{x}^{\mathrm{2}} }{{tanxsinx}}\right]\:\left[.\right]={grestest}\:{integer}\:{function} \\ $$
Commented by kaivan.ahmadi last updated on 20/May/19
if 0<x<(π/2)  sinx<x<tgx⇒xsinx<x^2 <xtgx⇒  ((xsinx)/(sinxtgx))<(x^2 /(sinxtgx))<((xtgx)/(sinxtgx))⇒  (x/(tgx))<(x^2 /(sinxtgx))<(x/(sinx))⇒  [(x/(tgx))]<[(x^2 /(sinxtgx))]<[(x/(sinx))]⇒  0<[(x^2 /(sinxtgx))]<1⇒  lim_(x→0)   [(x^2 /(sinxtgx))]=0
$${if}\:\mathrm{0}<{x}<\frac{\pi}{\mathrm{2}} \\ $$$${sinx}<{x}<{tgx}\Rightarrow{xsinx}<{x}^{\mathrm{2}} <{xtgx}\Rightarrow \\ $$$$\frac{{xsinx}}{{sinxtgx}}<\frac{{x}^{\mathrm{2}} }{{sinxtgx}}<\frac{{xtgx}}{{sinxtgx}}\Rightarrow \\ $$$$\frac{{x}}{{tgx}}<\frac{{x}^{\mathrm{2}} }{{sinxtgx}}<\frac{{x}}{{sinx}}\Rightarrow \\ $$$$\left[\frac{{x}}{{tgx}}\right]<\left[\frac{{x}^{\mathrm{2}} }{{sinxtgx}}\right]<\left[\frac{{x}}{{sinx}}\right]\Rightarrow \\ $$$$\mathrm{0}<\left[\frac{{x}^{\mathrm{2}} }{{sinxtgx}}\right]<\mathrm{1}\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\left[\frac{{x}^{\mathrm{2}} }{{sinxtgx}}\right]=\mathrm{0} \\ $$$$ \\ $$
Commented by tanmay last updated on 20/May/19
excllent
$${excllent} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *