Menu Close

lim-x-0-x-2-x-4-x-sinh-2-x-cosh-x-dx-find-x-from-equation-cos-2tan-1-x-1-2-




Question Number 116043 by bemath last updated on 30/Sep/20
    lim_(x→0)  ((√(x^2 +x^4 ))/x) ?     ∫ sinh^2 (x) cosh (x) dx      find x from equation cos (2tan^(−1) (x))= (1/2)
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} }}{\mathrm{x}}\:? \\ $$$$\:\:\:\int\:\mathrm{sinh}\:^{\mathrm{2}} \left(\mathrm{x}\right)\:\mathrm{cosh}\:\left(\mathrm{x}\right)\:\mathrm{dx}\: \\ $$$$\:\:\:\mathrm{find}\:\mathrm{x}\:\mathrm{from}\:\mathrm{equation}\:\mathrm{cos}\:\left(\mathrm{2tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\right)=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by MJS_new last updated on 30/Sep/20
((√(x^2 +x^4 ))/x)=((x(√(1+x^2 )))/x)=(√(1+x^2 )) ⇒ limit is 1  ∫sinh^2  x cosh x dx=(1/3)sinh^3  x +C  cos 2arctan x =((1−x^2 )/(1+x^2 ))=(1/2) ⇒ x=±((√3)/3)
$$\frac{\sqrt{{x}^{\mathrm{2}} +{x}^{\mathrm{4}} }}{{x}}=\frac{{x}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{{x}}=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\Rightarrow\:\mathrm{limit}\:\mathrm{is}\:\mathrm{1} \\ $$$$\int\mathrm{sinh}^{\mathrm{2}} \:{x}\:\mathrm{cosh}\:{x}\:{dx}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sinh}^{\mathrm{3}} \:{x}\:+{C} \\ $$$$\mathrm{cos}\:\mathrm{2arctan}\:{x}\:=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\:{x}=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *