Menu Close

lim-x-0-x-3-3x-3arctan-x-x-5-




Question Number 167277 by cortano1 last updated on 11/Mar/22
    lim_(x→0)  ((x^3 −3x+3arctan x)/x^5 ) =?
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{3arctan}\:\mathrm{x}}{\mathrm{x}^{\mathrm{5}} }\:=? \\ $$
Answered by qaz last updated on 11/Mar/22
lim_(x→0) ((x^3 −3x+3arctan x)/x^5 )=lim_(x→0) ((x^3 −3x+3x−3∙(1/3)x^3 +3∙(1/5)x^5 +o(x^5 ))/x^5 )=(3/5)
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{3arctan}\:\mathrm{x}}{\mathrm{x}^{\mathrm{5}} }=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{3x}−\mathrm{3}\centerdot\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}^{\mathrm{3}} +\mathrm{3}\centerdot\frac{\mathrm{1}}{\mathrm{5}}\mathrm{x}^{\mathrm{5}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{5}} \right)}{\mathrm{x}^{\mathrm{5}} }=\frac{\mathrm{3}}{\mathrm{5}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *